Feed流系统重构:架构篇

重构对我而言,最大的乐趣在于解决问题。我曾参与一个C#彩票算奖系统的重构,那时系统常因超时引发用户投诉。接手任务时,我既激动又紧张,连续两天几乎废寝忘食地编码。结果令人振奋,算奖时间从一小时大幅缩短至十分钟。

去年,我作为架构师,参与了家校朋友圈应用的重构。这个应用虽小,但功能齐全。我将分享这次架构设计的思路,探讨如何通过精心策划的重构,提升应用的性能和用户体验。

01 应用背景

1. 应用介绍

移动互联网时代,Feed 流产品是非常常见的,比如我们每天都会用到的朋友圈,微博,就是一种非常典型的 Feed 流产品。 Feed (动态):Feed 流中的每一条状态或者消息都是 Feed,比如朋友圈中的一个状态就是一个 Feed,微博中的一条微博就是一个 Feed。 Feed 流:持续更新并呈现给用户内容的信息流。每个人的朋友圈,微博关注页等等都是一个 Feed 流。

家校朋友圈是校信 app 的一个子功能。学生和老师可以发送图片,视频,声音等动态信息,学生和老师可以查看班级下的动态聚合。

为什么要重构呢?

▍ 代码可维护性

服务端端代码已经有四年左右的历史,随着时间的推移,人员的变动,不断的修复 Bug,不断的添加新功能,代码的可读性越来越差。而且很多维护的功能是在没有完全理解代码的情况下做修改的。新功能的维护越来越艰难,代码质量越来越腐化。

▍ 查询瓶颈 服务端使用的 mysql 作为数据库。Feed 表数据有两千万,Feed 详情表七千万左右。 服务端大量使用存储过程 (200+)。动态查询基本都是多张千万级大表关联,查询耗时在 5s 左右。DBA 同学反馈 sql 频繁超时。

2. 重构过程

《重构:改善既有代码的设计》这本书重点强调: “不要为了重构而重构”。 重构要考虑时间 (2 个月),人力成本 (3 人),需要解决核心问题。

1、功能模块化,便于扩展和维护

2、灵活扩展 Feed 类型,支撑新业务接入

3、优化动态聚合页响应速度

基于以上目标,我和小伙伴按照如下的工作。

1)梳理朋友圈业务,按照清晰的原则,将单个家校服务端拆分出两个模块

  • 1 space-app: 提供 rest 接口,供 app 调用
  • 2 space-task: 推送消息,任务处理

2)分库分表设计,去存储过程,数据库表设计

数据库 Feed 表已达到 2000 万,Feed 详情表已达到 7000 万 +。为了提升查询效率,肯定需要分库分表。但考虑到数据写入量每天才 2 万的量级,所以分表即可。

数据库里有 200 + 的存储过程,为了提升数据库表设计效率,整理核心接口调用存储过程逻辑。在设计表的时候,需要考虑 shardingKey 冗余。 按照这样的思路,梳理核心逻辑以及新表设计的时间也花了 10 个工作日。

产品大致有三种 Feed 查询场景

  • 班级维度:查询某班级下 Feed 动态列表
  • 用户维度:查询某用户下 Feed 动态列表
  • Feed 维度:查询 feed 下点赞列表

3)架构设计 在梳理业务,设计数据库表的过程中,并行完成各个基础组件的研发。

基础组件的封装包含以下几点:

  • 分库分表组件,Id 生成器,springboot starter
  • rocketmq client 封装
  • 分布式缓存封装

03 分库分表

3.1 主键

分库分表的场景下我选择非常成熟的 snowflake 算法。

第一位不使用,默认都是 0,41 位时间戳精确到毫秒,可以容纳 69 年的时间,10 位工作机器 ID 高 5 位是数据中心 ID,低 5 位是节点 ID,12 位序列号每个节点每毫秒累加,累计可以达到 2^12 4096 个 ID。

我们重点实现了 12 位序列号生成方式。中间 10 位工作机器 ID 存储的是

 Long workerId = Math.abs(crc32(shardingKeyValue) % 1024)
 //这里我们也可以认为是在1024个槽里的slot

底层使用的是 redis 的自增 incrby 命令。

   //转换成中间10位编码
   Integer workerId = Math.abs(crc32(shardingKeyValue) % 1024);
   String idGeneratorKey = 
   IdConstants.ID_REDIS_PFEFIX + currentTime;
   Long counter = atomicCommand.incrByEx(
    idGeneratorKey,
    IdConstants.STEP_LENGTH,
    IdConstants.SEQ_EXPIRE_TIME);
   Long uniqueId = SnowFlakeIdGenerator.getUniqueId(
      currentTime, 
      workerId.intValue(), 
   counter);

为了避免频繁的调用 redis 命令,还加了一层薄薄的本地缓存。每次调用命令的时候,一次步长可以设置稍微长一点,保持在本地缓存里,每次生成唯一主键的时候,先从本地缓存里预取一次,若没有,然后再通过 redis 的命令获取。

3.2 策略

因为早些年阅读 cobar 源码的关系,所以采用了类似 cobar 的分库方式。 

举例:用户编号 23838,crc32 (userId)%1024=562,562 在区间 [256,511] 之间。所以该用户的 Feed 动态会存储在 t_space_feed1 表。

3.3 查询

带 shardingkey 的查询,比如就通过用户编号查询 t_space_feed 表,可以非常容易的定位表名。

假如不是 shardingkey,比如通过 Feed 编号 (主键) 查询 t_space_feed 表,因为主键是通过 snowflake 算法生成的,我们可以通过 Feed 编号获取 workerId (10 位机器编号), 通过 workerId 也就确定数据位于哪张表了。

模糊查询场景很少。方案就是走 ES 查询,Feed 数据落库之后,通过 MQ 消息形式,把数据同步 ES,这种方式稍微有延迟的,但是这种可控范围的延迟是可以接受的。

3.4 工程

分库分表一般有三种模式:

  1. 代理模式,兼容 mysql 协议。如 cobar,mycat,drds。
  2. 代理模式,自定义协议。如艺龙的 DDA。
  3. 客户端模式,最有名的是 shardingsphere 的 sharding-jdbc。

分库分表选型使用的是 sharding-jdbc, 最重要的原因是轻便简单,而且早期的代码曾经看过一两次,原理有基础的认识。

核心代码逻辑其实还是蛮清晰的。

ShardingRule shardingRule = new ShardingRule(
shardingRuleConfiguration, 
customShardingConfig.getDatasourceNames());
DataSource dataSource = new ShardingDataSource(
   dataSourceMap,
   shardingRule, 
   properties);

请注意:对于整个应用来讲,client 模式的最终结果是初始化了 DataSource 的接口

  1. 需要定义初始化数据源信息 datasourceNames 是数据源名列表,dataSourceMap 是数据源名和数据源映射。
  2. 这里有一个概念逻辑表和物理表。
逻辑表物理表
t_space_feed (动态表)t_space_feed_0~3
  1. 分库算法: DataSourceHashSlotAlgorithm: 分库算法 TableHashSlotAlgorithm: 分表算法 两个类的核心算法基本是一样的。

    • 支持多分片键
    • 支持主键查询
  2. 配置 shardingRuleConfiguration。 这里需要为每个逻辑表配置相关的分库分表测试。 表规则配置类:TableRuleConfiguration。它有两个方法

  • setDatabaseShardingStrategyConfig
  • setTableShardingStrategyConfig

整体来看,shardingjdbc 的 api 使用起来还是比较流畅的。符合工程师思考的逻辑。

04 Feed 流

班级动态聚合页面,每一条 Feed 包含如下元素:

  • 动态内容(文本,音频,视频)
  • 前 N 个点赞用户
  • 当前用户是否收藏,点赞数,收藏数
  • 前 N 个评论

聚合首页需要显示 15 条首页动态列表,每条数据从数据数据库里读取,那接口性能肯定不会好。所以我们应该用缓存。那么这里就引申出一个问题,列表如何缓存 ?

4.1 列表缓存

列表如何缓存是我非常渴望和大家分享的技能点。这个知识点也是我 2012 年从开源中国上学到的,下面我以「查询博客列表」的场景为例。

我们先说第 1 种方案:对分页内容进行整体缓存。这种方案会 按照页码和每页大小组合成一个缓存 key,缓存值就是博客信息列表。 假如某一个博客内容发生修改,我们要重新加载缓存,或者删除整页的缓存。

这种方案,缓存的颗粒度比较大,如果博客更新较为频繁,则缓存很容易失效。下面我介绍下第 2 种方案:仅对博客进行缓存。流程大致如下:

1)先从数据库查询当前页的博客 id 列表,sql 类似:

select id from blogs limit 0,10 

2)批量从缓存中获取博客 id 列表对应的缓存数据 ,并记录没有命中的博客 id,若没有命中的 id 列表大于 0,再次从数据库中查询一次,并放入缓存,sql 类似:

select id from blogs where id in (noHitId1, noHitId2)

3)将没有缓存的博客对象存入缓存中

4)返回博客对象列表

理论上,要是缓存都预热的情况下,一次简单的数据库查询,一次缓存批量获取,即可返回所有的数据。另外,关于 缓 存批量获取,如何实现?

  • 本地缓存:性能极高,for 循环即可
  • memcached:使用 mget 命令
  • Redis:若缓存对象结构简单,使用 mget 、hmget 命令;若结构复杂,可以考虑使用 pipleline,lua 脚本模式

第 1 种方案适用于数据极少发生变化的场景,比如排行榜,首页新闻资讯等。

第 2 种方案适用于大部分的分页场景,而且能和其他资源整合在一起。举例:在搜索系统里,我们可以通过筛选条件查询出博客 id 列表,然后通过如上的方式,快速获取博客列表。

4.2 聚合

Redis:若缓存对象结构简单,使用 mget 、hmget 命令;若结构复杂,可以考虑使用 pipleline,lua 脚本模式

这里我们使用的是 pipeline 模式。客户端采用了 redisson。 伪代码:

//添加like zset列表
 ZsetAddCommand zsetAddCommand = new ZsetAddCommand(LIKE_CACHE_KEY + feedId, spaceFeedLike.getCreateTime().getTime(), userId);
pipelineCommandList.add(zsetAddCommand);
//设置feed 缓存的加载数量
HashMsetCommand hashMsetCommand = new HashMsetCommand(FeedCacheConstant.FEED_CACHE_KEY + feedId, map);
pipelineCommandList.add(hashMsetCommand);
//一次执行两个命令
List<?> result = platformBatchCommand.executePipelineCommands(pipelineCommandList);
模块redis 存储格式
动态HASH 动态详情
点赞ZSET 存储 userId , 前端显示用户头像,用户缓存使用 string 存储
收藏ZSET 存储用户 Id,前端判断用户是否收藏过
评论ZSET 存储评论 Id,评论详情存储在 string 存储

首页班级动态聚合页,理想情况,缓存全部命中,性能完全可以达到我们设定的目标。

05 消息队列

我们参考阿里 ons client 模仿他的设计模式,做了 rocketmq 的简单封装。

封装的目的在于方便工程师接入,减少工程师在各种配置上心智的消耗。

  1. 支持批量消费和单条消费;
  2. 支持顺序发送;
  3. 简单优化了 rocketmq broker 限流情况下,发送消息失败的场景。

写在最后

这篇文字主要和大家分享应用重构的架构设计。 其实重构有很多细节需要处理。

  1. 数据迁移方案
  2. 团队协作,新人培养
  3. 应用平滑升级

每一个细节都需要花费很大的精力,才可能把系统重构好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/922072.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据结构第一讲

数据结构定义 算法的定义 什么是好算法&#xff1f; 空间复杂度 时间复杂度 例子1 打印1到N之间的正整数 有递归和循环两种方法实现。 但是在数字变大后&#xff0c;递归的方法会导致内存占用过多而崩溃。 而循环则不会 例子2 写程序给定多项式在X处的值 从里往外算的算…

Leetcode226. 翻转二叉树(HOT100)+Leetcode221. 最大正方形(HOT100)

链接 题解&#xff1a; 本题是要镜像反转二叉树&#xff0c;相当于从中间一分&#xff0c;然后把左子树和右子树对调&#xff0c;但又不是简单的对调&#xff0c;还要继续反转子树的子树&#xff0c;所以要用递归。 我们特判root是否为空&#xff08;否则出现nullptr->nul…

Jenkins + gitee 自动触发项目拉取部署(Webhook配置)

目录 前言 Generic Webhook Trigger 插件 下载插件 ​编辑 配置WebHook 生成tocken 总结 前言 前文简单介绍了Jenkins环境搭建&#xff0c;本文主要来介绍一下如何使用 WebHook 触发自动拉取构建项目&#xff1b; Generic Webhook Trigger 插件 实现代码推送后&#xff0c;触…

Dubbo源码解析-服务调用(七)

一、服务调用流程 服务在订阅过程中&#xff0c;把notify 过来的urls 都转成了invoker&#xff0c;不知道大家是否还记得前面的rpc 过程&#xff0c;protocol也是在服务端和消费端各连接子一个invoker&#xff0c;如下图&#xff1a; 这张图主要展示rpc 主流程&#xff0c;消费…

Spring 框架的介绍(Java EE 学习笔记02)

Spring致力于解决Java EE应用中的各种问题&#xff0c;对于一个Java开发者来说&#xff0c;Spring框架的熟练使用是必备的技能之一。Spring具有良好的设计和分层结构&#xff0c;它克服了传统重量型框架臃肿、低效的劣势&#xff0c;大大简化了项目开发中的技术复杂性。 ​ 什…

基于YOLOv8深度学习的智慧考场考试防作弊行为检测系统设计与实现(PyQt5界面+数据集+训练代码)

随着教育领域的数字化和智能化发展&#xff0c;考试中的作弊行为已成为影响考试公平性和效率的重要问题。为了解决这一问题&#xff0c;本研究设计并实现了一种基于YOLOv8深度学习模型的智慧考场考试防作弊行为检测系统。系统采用YOLOv8算法对考场中的视频图像数据进行实时分析…

Android 天气APP(三十七)新版AS编译、更新镜像源、仓库源、修复部分BUG

上一篇&#xff1a;Android 天气APP&#xff08;三十六&#xff09;运行到本地AS、更新项目版本依赖、去掉ButterKnife 新版AS编译、更新镜像源、仓库源、修复部分BUG 前言正文一、更新镜像源① 腾讯源③ 阿里源 二、更新仓库源三、修复城市重名BUG四、地图加载问题五、源码 前…

掌握 Spring 事务管理:深入理解 @Transactional 注解

在业务方法上使用Transactional开启声明式事务时&#xff0c;很有可能由于使用方式有误&#xff0c;导致事务没有生效。 环境准备 表结构 CREATE TABLE admin (id bigint(20) unsigned NOT NULL AUTO_INCREMENT,username varchar(255) DEFAULT NULL,password varchar(255) …

Docker Seata分布式事务保护搭建 DB数据源版搭建 结合Nacos服务注册

介绍 Seata&#xff08;Simple Extensible Autonomous Transaction Architecture&#xff09;是一个开源的分布式事务解决方案&#xff0c;旨在为微服务架构中的分布式系统提供事务管理支持。Seata 通过提供全局事务管理&#xff0c;帮助开发者在分布式环境中保持数据一致性 …

【设计模式系列】责任链模式(十六)

一、什么是责任链模式 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为型设计模式。其核心思想是将请求的发送者和接收者解耦&#xff0c;通过一个中介链来传递请求&#xff0c;使得多个对象都有可能接收请求&#xff0c;从而避免请求发送者和接…

实时数据研发 | Flink技术栈

下周要开始接触一些实时的内容了&#xff0c;想来是很幸运的&#xff0c;这是我在新人培训上提问过技术前辈的问题&#xff1a;“想学习实时相关技术&#xff0c;但是部门没有类似的需求&#xff0c;应该如何提升&#xff1f;”当时师姐说先用心去学&#xff0c;然后向主管证明…

python对tif数据重投影

一、不同投影坐标系的区别 地理坐标系&#xff08;Geographic Coordinate System, GCS&#xff09;和投影坐标系&#xff08;Projected Coordinate System, PCS&#xff09;是两种常见的坐标系统&#xff0c;它们在表示地理信息时有着不同的方式。以下是它们的主要区别&#x…

Django+Nginx+uwsgi网站使用Channels+redis+daphne实现简单的多人在线聊天及消息存储功能

网站部署在华为云服务器上&#xff0c;Debian系统&#xff0c;使用DjangoNginxuwsgi搭建。最终效果如下图所示。 一、响应逻辑顺序 1. 聊天页面请求 客户端请求/chat/&#xff08;输入聊天室房间号界面&#xff09;和/chat/room_name&#xff08;某个聊天室页面&#xff09;链…

多目标粒子群优化(Multi-Objective Particle Swarm Optimization, MOPSO)算法

概述 多目标粒子群优化&#xff08;MOPSO&#xff09; 是粒子群优化&#xff08;PSO&#xff09;的一种扩展&#xff0c;用于解决具有多个目标函数的优化问题。MOPSO的目标是找到一组非支配解&#xff08;Pareto最优解&#xff09;&#xff0c;这些解在不同目标之间达到平衡。…

oracle会话追踪

一 跟踪当前会话 1.1 查看当前会话的SID,SERIAL# #在当前会话里执行 示例&#xff1a; SQL> select distinct userenv(sid) from v$mystat; USERENV(SID) -------------- 1945 SQL> select distinct sid,serial# from v$session where sid1945; SID SERIAL# …

python 画图例子

目录 多组折线图点坐标的折线图 多组折线图 数据: 第1行为x轴标签第2/3/…行等为数据,其中第一列为标签&#xff0c;后面为y值 图片: 代码: import matplotlib.pyplot as plt# 原始数据字符串 # 第1行为x轴标签 # 第2/3/...行等为数据,其中第一列为标签&#xff0c;后面…

未来已来:少儿编程竞赛聚焦物联网,激发创新潜力

随着人工智能与物联网技术&#xff08;IoT&#xff09;的快速发展&#xff0c;少儿编程教育正在迎来新的变革浪潮。近年来&#xff0c;各类少儿编程竞赛纷纷增加了物联网相关主题&#xff0c;要求学生结合编程知识和硬件设备设计智能家居、智慧城市等创新项目。这一趋势不仅丰富…

Java-08 深入浅出 MyBatis - 多对多模型 SqlMapConfig 与 Mapper 详细讲解测试

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 大数据篇正在更新&#xff01;https://blog.csdn.net/w776341482/category_12713819.html 目前已经更新到了&#xff1a; MyBatis&#xff…

字符串专题 算法小题

感觉很久不做题了, 本身自己虽然就没水平就是啦哈哈~ 那下面分享几道最近写的几道题, 都很简单, 是关于"字符串"的, 只不过会稍微用到一点代码能力就是了, 算是比较基础的题目. 目录 1.最长公共区域(⭐⭐⭐ 代码)1.1 题目描述1.2 题目思路方法1: 两两求公共区域方法2…

虚拟化的三种方式

1.前言 Virtualization(虚拟化)是让公开的虚拟资源等同于被虚拟化的底层物理资源。虚拟化在各个领域应用很广泛&#xff0c;不局限于计算机科学领域。无论是在硬件、软件还是在嵌入式子系统中&#xff0c;虚拟化总是使用或组合三种简单的技术来实现的&#xff1a;多路复用(Mul…