OpenCV与AI深度学习|16个含源码和数据集的计算机视觉实战项目(建议收藏!)

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:分享|16个含源码和数据集的计算机视觉实战项目

本文将分享16个含源码和数据集的计算机视觉实战项目。具体包括:

    1. 人数统计工具

    2. 颜色检测

    3. 视频中的对象跟踪

    4. 行人检测

    5. 手势识别

    6. 人类情感识别

    7. 车道线检测

    8. 名片扫描仪

    9. 车牌识别

    10. 手写数字识别

    11.鸢尾花分类

    12. 家庭照片人脸检测

    13. 乐高积木查找器

    14. 个人防护装备检测

    15. 口罩检测

    16. 交通灯检测

1. 人数统计工具

    构建人数统计解决方案既可以是一个有趣的项目,又可以真正找到现实世界的应用程序。

    要检测和计算图像中存在的人数,您需要相关的训练数据集和数据训练平台。您可以使用 OpenCV 等免费工具来标记数据,或使用 V7 等自动注释工具来更快地完成此项目。

    自 COVID-19 爆发以来,人数统计解决方案越来越受欢迎,有助于执行社交距离规则并提高安全性。

    下面是一个推荐的数据集和代码,可以帮助您入门:

https://github.com/gjy3035/PCC-Net

2. 颜色检测

    接下来是一个简单的颜色检测器,可用于各种视觉任务。

    从检测颜色到构建绿屏应用程序(用自定义视频或背景替换绿色背景)到简单的照片编辑软件,构建颜色识别器是计算机视觉入门的一个很棒的项目。

    以下是您可能想要在项目中使用的一些有趣的数据集和代码:

https://github.com/mpatacchiola/deepgaze

3. 视频中的对象跟踪

    对象跟踪是根据先前的信息估计场景中存在的目标对象的状态。

    您可以使用涉及一个对象(例如汽车)或多个对象(例如行人、动物等)的视频来构建简单的对象跟踪模型。

    本质上,该模型将执行两项任务 - 预测对象的下一个状态并根据对象的真实状况纠正该状态。对象跟踪模型在交通控制和人机交互中得到应用。

    以下是您可能会对此计算机视觉任务感兴趣的一些视频数据集和代码:

https://github.com/JunweiLiang/Object_Detection_Tracking

4. 行人检测

    构建对象检测模型来检测行人是最简单、最快完成的计算机视觉项目之一。

    您所需要的只是高质量图像的相关数据集和用于训练和测试模型的数据训练平台。您可以使用免费的图像注释工具之一。

    行人探测器通常用于汽车行业的交通安全以及人机交互和智能视频系统。

    考虑这些数据集和代码来开始:

https://github.com/kuanhungchen/awesome-tiny-object-detection

5. 手势识别

    手势识别是一项更高级的计算机视觉任务,要求您首先将手部区域与背景分开,然后分割手指以预测手势。

    如果您想保持模型简单,可以使用 OpenCV。训练后,您可以使用网络摄像头测试您的模型。手势模型可用于 VR 游戏和手语。

    查看这些数据集和代码以开始:

https://github.com/ahmetgunduz/Real-time-GesRec

6. 人类情感识别

如果您决定执行更具挑战性的任务,请考虑构建情绪检测模型。您可以将模型基于六种主要的面部情绪:快乐、悲伤、愤怒、恐惧、厌恶和惊讶。

    该项目的三个主要组成部分包括图像预处理、特征提取和特征分类。

    以下是可能派上用场的数据集和代码:

https://github.com/atulapra/Emotion-detection

7. 车道线检测

道路车道检测是另一种在汽车行业发展中发挥关键作用的计算机视觉模型。

    道路车道检测器主要用于自动驾驶汽车,可以是一个有趣的初学者项目,它将帮助您获得图像和视频的实践经验。

    以下是一些可以帮助您的数据集和代码:

https://github.com/oneshell/road-lane-detection

8. 名片扫描仪

    开发名片扫描仪可以使用 OCR(光学字符识别)技术来完成。您训练有素的模型将从名片中查找并提取信息。

    本质上,该项目将分为三个阶段:图像处理(噪声消除)、OCR(文本提取)和分类(对关键属性进行分类)。

    您可以使用名片阅读器自动输入数据。选择其中一个数据集开始:

https://github.com/dhruv2601/Business-Card-Scanner

9. 车牌识别

    车牌识别器是使用 OCR 的计算机视觉项目的另一个想法。

    然而,该项目存在两个挑战:数据收集以及车牌格式因地点/国家而异。

    因此,除非您训练大量数据(如果您设法获得数据),否则您的模型可能不准确。

    注意:车牌号被视为敏感数据,因此在构建模型时请确保坚持使用公开可用的数据集。

    一个简单的自动车牌识别系统可以使用基本的图像处理技术,您可以使用 OpenCV 和 Python 来构建它。

    然而,更先进的系统使用 YOLO 或 Fast C-RNN 等目标检测器。

    自动车牌识别可用于安防、停车、智慧城市、自动收费、门禁等。

    以下是您可能会考虑的一些数据集和代码:

https://github.com/sergiomsilva/alpr-unconstrained

10. 手写数字识别

    该项目对于计算机视觉新手来说是一个完美的开始——您可以使用 MNIST 数据集构建一个简单的数字识别器。

    当您有机会使用卷积神经网络训练模型时,您将学习如何开发、评估和使用卷积深度学习神经网络进行图像分类。

    MNIST 数据集包含 60,000 个示例的训练集和 10,000 个示例的测试集。您可以在这里访问它:

https://github.com/MyScript/myscript-math-web

11.鸢尾花分类

    这是另一个计算机视觉项目,基于最流行且最容易获得的模式识别数据集之一——鸢尾花分类数据集。

    它包含三个类,每个类 50 个实例,其中每个类都指一种鸢尾植物。这是一个很棒的初学者项目,将帮助您获得图像分类的实践经验,因为您将训练模型来预测新鸢尾花的种类。

    您可以在此处下载数据集和代码:

https://github.com/amberkakkar01/IRIS-Flower-classification

12. 家庭照片人脸检测

    拿起您的家庭相册收集原始数据并构建人脸识别模型以识别照片中的家庭成员。

    您可以使用免费的注释工具标记数据,并在不到一个小时的时间内训练您的模型。该任务是一个多阶段过程,包括人脸检测、对齐、特征提取和特征识别。

    为了使您的项目更有趣、模型更准确,也可以考虑使用视频数据。如果您无法自行获取数据,请查看这些数据集以开始面部识别项目:

https://github.com/jfthuong/photo-organizer

13. 乐高积木查找器

    如果您在童年时期曾花费数小时搭建乐高积木,那么这个项目可能是让您迷上计算机视觉的完美方式。

    最简单的形式是,您可以构建一个模型,使用网络摄像头或手机摄像头实时检测和识别乐高积木。您所需要的只是大量的训练数据和训练模型的工具。

以下是适合您的数据集和代码:

https://github.com/ShawnHymel/openmv-lego-brick-finder

14. 个人防护装备检测

    该计算机视觉项目的目标是建立一个模型来识别个人防护装备或口罩的元素。您可以在几个小时内完成它,并使用网络摄像头并在计算机前戴上面罩进行测试。

    个人防护装备检测模型可应用于建筑或医疗保健(医院)等行业。

    查看这些数据集和代码以开始使用:

https://github.com/AnshulSood11/PPE-Detection-YOLO-Deep_SORT

15. 口罩检测

    与 PPE 检测类似,您可以构建一个简单的口罩检测模型来识别在公共场合戴口罩和不戴口罩的人。

    请记住收集大量数据,以确保模型处理各种遮挡的准确性。

查看此数据集和代码以开始:

https://github.com/naemazam/Real-Time-Face-Mask-Detection

16. 交通灯检测

    最后,考虑花一些时间训练交通灯探测器。该项目相对容易完成,因为您可以免费访问数据和研究的可用性。

    交通灯检测在智能交通领域得到应用,包括自动驾驶汽车和智能城市等流行用例。

以下是您可以使用的一些数据集和代码:

https://github.com/erdos-project/pylot

THE END!

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/920830.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL win安装 和 pymysql使用示例

目录 一、MySQL安装 下载压缩包: 编写配置文件: 配置环境变量: 初始化服务和账户 关闭mysql开机自启(可选) 建议找一个数据库可视化软件 二、使用pymysql操作数据库 安装pymysql 示例代码 报错处理 一、My…

springboot基于微信小程序的停车场管理系统

摘 要 停车场管理系统是一种基于移动端的应用程序,旨在方便车主停车的事务办理。该小程序提供了便捷的停车和功能,使车主能够快速完成各项必要的手续和信息填写。旨在提供一种便捷、高效的预约停车方式,减少停车手续的时间和精力成本。通过该…

js:数组转换为字符串

1、使用join 通过join,将数组拼接,使用,进行分割 let array [a, b, c] let str array.join(,); console.log(str) 2、使用toString() const array [a, b, c] const string array.toString() console.log(string) 3、使用扩展运算符和…

npm上传自己封装的插件(vue+vite)

一、npm账号及发包删包等命令 若没有账号,可在npm官网:https://www.npmjs.com/login 进行注册。 在当前项目根目录下打开终端命令窗口,常见命令如下: 1、登录命令:npm login(不用每次都重新登录&#xff0…

路由缓存后跳转到新路由时,上一路由中的tip信息框不销毁问题解决

上一路由tip信息框不销毁问题解决 路由缓存篇问题描述及截图解决思路关键代码 路由缓存篇 传送门 问题描述及截图 路由缓存后跳转新路由时,上一个路由的tip信息框没销毁。 解决思路 在全局路由守卫中获取DOM元素,通过css去控制 关键代码 修改文…

uni-app 界面TabBar中间大图标设置的两种方法

一、前言 最近写基于uni-app 写app项目的时候,底部导航栏 中间有一个固定的大图标,并且没有激活状态。这里记录下实现方案。效果如下(党组织这个图标): 方法一:midButton的使用 官方文档:ta…

Apple Vision Pro开发003-PolySpatial2.0新建项目

unity6.0下载链接:Unity 实时开发平台 | 3D、2D、VR 和 AR 引擎 一、新建项目 二、导入开发包 com.unity.polyspatial.visionos 输入版本号 2.0.4 com.unity.polyspatial(单独导入),或者直接安装 三、对应设置 其他的操作与之前的版本相同…

xiaolin coding 图解网络笔记——基础篇

基础篇 Linux 系统是如何收发网络包的? 网络模型 为了使多种设备能通过网络相互通信,和为了解决不同设备在网络互连中的兼容性问题,国际标准化组织制定了开放式系统互连通信参考模型(Open System Interconnection Reference Mo…

【vba源码】导入excel批注信息

Hi,大家好呀! 又到了一周一分享的时间,上周繁忙的我都没有给大家直播,视频也没更新,那这周大家放心,都会给大家更新,今天我们来讲点啥呢?每周找优质的内容给大家更新是我最最痛苦的…

跨平台WPF框架Avalonia教程 十三

AutoCompleteBox 自动补全输入框 自动补全输入框提供了一个供用户输入的文本框和一个包含可能匹配项的下拉列表。下拉列表会在用户开始输入时显示,并且每输入一个字符,匹配项都会更新。用户可以从下拉列表中选择匹配项。 文本与可能项匹配的方式是可配…

MATLAB实现GARCH(广义自回归条件异方差)模型计算VaR(Value at Risk)

MATLAB实现GARCH(广义自回归条件异方差)模型计算VaR(Value at Risk) 1.计算模型介绍 使用GARCH(广义自回归条件异方差)模型计算VaR(风险价值)时,方差法是一个常用的方法。GARCH模型能够捕捉到金融时间序列数据中的波…

力扣 LeetCode 513. 找树左下角的值(Day8:二叉树)

解题思路: 方法一:递归法(方法二更好理解,个人更习惯方法二) 前中后序均可,实际上没有中的处理 中左右,左中右,左右中,实际上都是左在前,所以遇到的第一个…

Nuget For Unity插件介绍

NuGet for Unity:提升 Unity 开发效率的利器 NuGet 是 .NET 开发生态中不可或缺的包管理工具,你可以将其理解为Unity的Assets Store或者UPM,里面有很多库可以帮助我们提高开发效率。当你想使用一个库,恰好这个库没什么依赖(比如newtonjson),那么下载包并找到Dll直接…

“乐鑫组件注册表”简介

当启动一个新的开发项目时,开发者们通常会利用库和驱动程序等现有的代码资源。这种做法不仅节省时间,还简化了项目的维护工作。本文将深入探讨乐鑫组件注册表的概念及其核心理念,旨在指导您高效地使用和贡献组件。 概念解析 ESP-IDF 的架构…

药房革新:Spring Boot中药实验管理系统

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常…

嵌入式 UI 开发的开源项目推荐

嵌入式开发 UI 难吗?你的痛点我懂!作为嵌入式开发者,你是否也有以下困扰?设备资源太少,功能和美观只能二选一?调试效率低,每次调整都要反复烧录和测试?开发周期太长,让你…

CTF--php伪协议结合Base64绕过

Base64绕过 在ctf中,base64是比较常见的编码方式,在做题的时候发现自己对于base64的编码和解码规则不是很了解,并且恰好碰到了类似的题目,在翻阅了大佬的文章后记录一下,对于base64编码的学习和一个工具 base64编码是…

基于Java Springboot电影播放平台

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 数据…

国标GB28181摄像机接入EasyGBS国标GB28181设备管理软件:GB28181-2022媒体传输协议解析

随着信息技术的飞速发展,视频监控领域正经历从传统安防向智能化、网络化安防的深刻转变。在这一转变过程中,国标GB28181设备管理软件EasyGBS成为了这场技术变革的重要一环。 GB28181-2022媒体传输协议 媒体传输命令包括实时视音频点播、历史视音频回放/…

Redis-monitor安装与配置

0、前言 压测环境因为隔离原因没法直接查看redis日志跟性能指数,只能通过监控工具查看,使用开源redis-montor监控查看 开源地址: GitCode - 全球开发者的开源社区,开源代码托管平台 1、python环境准备(python -v有的忽略&#xff…