【Swift】运算符

文章目录

  • 术语
  • 赋值运算符
  • 算数运算符
    • 基本四则算术运算符
    • 求余运算符
    • 一元负号运算符
    • 一元正号运算符
  • 比较运算符
  • 三元运算符
  • 空合运算符
  • 区间运算符
    • 闭区间运算符
    • 半开区间运算符
    • 单侧区间运算符
  • 逻辑运算符
    • 逻辑非运算符
    • 逻辑与运算符
    • 逻辑或运算符
    • 逻辑运算符组合计算
  • 位运算符
  • 运算符优先级
  • 使用括号来明确优先级

运算符是检查、改变、合并值的特殊符号或短语。例如,加号(+)将两个数相加(如 let i = 1 + 2)。更复杂的运算例子包括逻辑与运算符 &&(如 if enteredDoorCode && passedRetinaScan)。

Swift 支持大部分标准 C 语言的运算符,且为了减少常见编码错误做了部分改进。如:赋值符(=)不再有返回值,这样就消除了手误将判等运算符(==)写成赋值符导致代码错误的缺陷。算术运算符(+,-,*,/,% 等)的结果会被检测并禁止值溢出,以此来避免保存变量时由于变量大于或小于其类型所能承载的范围时导致的异常结果。当然允许你使用 Swift 的溢出运算符来实现溢出。详情参见 溢出运算符。

Swift 还提供了 C 语言没有的区间运算符,例如 a…<b 或 a…b,这方便我们表达一个区间内的数值。

本章节只描述了 Swift 中的基本运算符,高级运算符 这章会包含 Swift 中的高级运算符,及如何自定义运算符,及如何进行自定义类型的运算符重载。

术语

运算符分为一元、二元和三元运算符:

  • 一元运算符对单一操作对象操作(如 -a)。一元运算符分前置运算符和后置运算符,前置运算符需紧跟在操作对象之前(如 !b),后置运算符需紧跟在操作对象之后(如 c!)。
  • 二元运算符操作两个操作对象(如 2 + 3),是中置的,因为它们出现在两个操作对象之间。
  • 三元运算符操作三个操作对象,和 C 语言一样,Swift 只有一个三元运算符,就是三目运算符(a ? b : c)。

受运算符影响的值叫操作数,在表达式 1 + 2 中,加号 + 是二元运算符,它的两个操作数是值 1 和 2。

赋值运算符

下表列出了 Swift 语言的基本赋值运算:
赋值运算符以下为赋值运算的简单实例:

var A = 10
var B = 20
var C = 100

C = A + B
print("C = A + B 结果为:\(C)")

C += A
print("C += A 结果为:\(C)")

C -= A
print("C -= A 结果为:\(C)")

C *= A
print("C *= A 结果为:\(C)")

C /= A
print("C /= A 结果为:\(C)")

上述代码输出结果为:

C = A + B 结果为:30
C += A 结果为:40
C -= A 结果为:30
C *= A 结果为:300
C /= A 结果为:30

算数运算符

基本四则算术运算符

Swift 中所有数值类型都支持了基本的四则算术运算符:

运算符描述实例
+加号A + B 结果为 30
-减号A − B 结果为 -10
*乘号A * B 结果为 200
/除号B % A 结果为 0
var A = 10
var B = 20

print("A + B 结果为:\(A + B)")
print("A - B 结果为:\(A - B)")
print("A * B 结果为:\(A * B)")
print("B / A 结果为:\(B / A)")
A += 1   // 类似 A++
print("A += 1 后 A 的值为 \(A)")
B -= 1   // 类似 B--
print("B -= 1 后 B 的值为 \(B)")

以上代码输出的结果为:

A + B 结果为:30
A - B 结果为:-10
A * B 结果为:200
B / A 结果为:2
A += 1 后 A 的值为 11
B -= 1 后 B 的值为 19

※注意:
与 C 语言和 Objective-C 不同的是,Swift 默认情况下不允许在数值运算中出现溢出情况。但是你可以使用 Swift 的溢出运算符来实现溢出运算(如 a &+ b)。详情参见 溢出运算符。

求余运算符

求余运算符(a % b)是计算 b 的多少倍刚刚好可以容入 a,返回多出来的那部分(余数)。

我们来谈谈取余是怎么回事,计算 9 % 4,你先计算出 4 的多少倍会刚好可以容入 9 中:
你可以在 9 中放入2个 4,那余数是 1。在 Swift 中可以表达为:

9 % 4    // 等于 1

为了得到 a % b 的结果,% 计算了以下等式,并输出 余数作为结果:

a = (b × 倍数) + 余数

当 倍数取最大值的时候,就会刚好可以容入 a 中。把 9 和 4 代入等式中,我们得 1:9 = (4 × 2) + 1。
同样的方法,我们来计算 -9 % 4:

-9 % 4   // 等于 -1

把 -9 和 4 代入等式,-2 是使 余数 与 -9 同符号时能取到的最大整数:-9 = (4 × -2) + -1,余数是 -1。

※注意:
在对负数 b 求余时,b 的符号会被忽略。这意味着 a % b 和 a % -b 的结果是相同的。

示例:

let a = 9 % 4;
print("a: \(a)");

let b = 9 % -4;
print("b: \(b)");

let c = -9 % 4;
print("c: \(c)");

以上代码输出的结果为:

a: 1
b: 1
c: -1

一元负号运算符

数值的正负号可以使用前缀 -(即一元负号符)来切换:

let three = 3
let minusThree = -three       // minusThree 等于 -3
let plusThree = -minusThree   // plusThree 等于 3, 或 "负负3"

print("three: \(three)");
print("minusThree: \(minusThree)");
print("plusThree: \(plusThree)");

上述代码输出结果:

three: 3
minusThree: -3
plusThree: 3

※注意:
一元负号符(-)写在操作数之前,中间没有空格。

一元正号运算符

一元正号符(+)不做任何改变地返回操作数的值:

let minusSix = -6
let alsoMinusSix = +minusSix  // alsoMinusSix 等于 -6

print("minusSix: \(minusSix)");
print("alsoMinusSix: \(alsoMinusSix)");

上述代码输出结果:

minusSix: -6
alsoMinusSix: -6

比较运算符

以下表格列出了 Swift 语言支持的比较运算符,其中变量 A 为 10,变量 B 为 20:

运算符描述实例
==等于(A == B) 为 false
!=不等于(A != B) 为 true
>大于(A > B) 为 false
<小于(A < B) 为 true
>=大于等于(A >= B) 为 false
<=小于等于(A <= B) 为 true

※注意:
Swift 也提供恒等(===)和不恒等(!==)这两个比较符来判断两个对象是否引用同一个对象实例。更多细节在 类与结构 章节的恒等运算符部分。

每个比较运算都返回了一个标识表达式是否成立的布尔值:

let a = 1 == 1   // true, 因为 1 等于 1
let b = 2 != 1   // true, 因为 2 不等于 1
let c = 2 > 1    // true, 因为 2 大于 1
let d = 1 < 2    // true, 因为 1 小于2
let e = 1 >= 1   // true, 因为 1 大于等于 1
let f = 2 <= 1   // false, 因为 2 并不小于等于 1

print("type of a: \(type(of: a)), a value: \(a)");
print("type of b: \(type(of: b)), a value: \(b)");
print("type of c: \(type(of: c)), a value: \(c)");
print("type of d: \(type(of: d)), a value: \(d)");
print("type of e: \(type(of: e)), a value: \(e)");
print("type of f: \(type(of: f)), a value: \(f)");

上述代码输出结果为:

type of a: Bool, a value: true
type of b: Bool, a value: true
type of c: Bool, a value: true
type of d: Bool, a value: true
type of e: Bool, a value: true
type of f: Bool, a value: false

如果两个元组的元素相同,且长度相同的话,元组就可以被比较。比较元组大小会按照从左到右、逐值比较的方式,直到发现有两个值不等时停止。如果所有的值都相等,那么这一对元组我们就称它们是相等的。例如:

let aa = (1, "zebra") < (2, "apple")   // true,因为 1 小于 2
let bb = (3, "apple") < (3, "bird")    // true,因为 3 等于 3,但是 apple 小于 bird
let cc = (4, "dog") == (4, "dog")      // true,因为 4 等于 4,dog 等于 dog

print("type of aa: \(type(of: aa)), a value: \(aa)");
print("type of bb: \(type(of: bb)), a value: \(bb)");
print("type of cc: \(type(of: cc)), a value: \(cc)");

上述代码输出结果:

type of aa: Bool, a value: true
type of bb: Bool, a value: true
type of cc: Bool, a value: true

当元组中的元素都可以被比较时,你也可以使用这些运算符来比较它们的大小。例如,像下面展示的代码,你可以比较两个类型为 (String, Int) 的元组,因为 Int 和 String 类型的值可以比较。相反,Bool 不能被比较,也意味着存有布尔类型的元组不能被比较。

("blue", -1) < ("purple", 1)       // 正常,比较的结果为 true
("blue", false) < ("purple", true) // 错误,因为 < 不能比较布尔类型

※注意:
Swift 标准库只能比较 7个 以内元素的元组比较函数。如果你的元组元素超过 7个 时,你需要自己实现比较运算符。

三元运算符

三元运算符的特殊在于它是有三个操作数的运算符,它的形式是 问题 ? 答案 1 : 答案 2。它简洁地表达根据 问题成立与否作出二选一的操作。如果 问题 成立,返回 答案 1 的结果;反之返回 答案 2 的结果。
三元运算符是以下代码的缩写形式:

if question {
	answer1
} else {
	answer2
}

这里有个计算表格行高的例子。如果有表头,那行高应比内容高度要高出 50 点;如果没有表头,只需高出 20 点:

let contentHeight = 40
let hasHeader = true
let rowHeight = contentHeight + (hasHeader ? 50 : 20)   // rowHeight 现在是 90
print("rowHeight:\(rowHeight)");

上述代码输出的结果是:

rowHeight:90

上面的写法比下面的代码更简洁:

let contentHeight = 40
let hasHeader = true
var rowHeight = contentHeight
if hasHeader {
	rowHeight = rowHeight + 50
} else {
	rowHeight = rowHeight + 20
}
// rowHeight 现在是 90

第一段代码例子使用了三元运算,所以一行代码就能让我们得到正确答案。这比第二段代码简洁得多,无需将 rowHeight 定义成变量,因为它的值无需在 if 语句中改变。

三元运算为二选一场景提供了一个非常便捷的表达形式。不过需要注意的是,滥用三元运算符会降低代码可读性。所以我们应避免在一个复合语句中使用多个三元运算符。

空合运算符

空合运算符(a ?? b)将对可选类型 a 进行空判断,如果 a 包含一个值就进行解包,否则就返回一个默认值 b。表达式 a 必须是 Optional 类型。默认值 b 的类型必须要和 a 存储值的类型保持一致。

空合运算符是对以下代码的简短表达方法:

a != nil ? a! : b

上述代码使用了三元运算符。当可选类型 a 的值不为空时,进行强制解包(a!),访问 a 中的值;反之返回默认值 b。无疑空合运算符(??)提供了一种更为优雅的方式去封装条件判断和解包两种行为,显得简洁以及更具可读性。

※注意:
如果 a 为非空值(non-nil),那么值 b 将不会被计算。这也就是所谓的短路求值。

下文例子采用空合运算符,实现了在默认颜色名和可选自定义颜色名之间抉择:

let defaultColorName = "red"
var userDefinedColorName: String?   //默认值为 nil

var colorNameToUse = userDefinedColorName ?? defaultColorName // userDefinedColorName 的值为空,所以 colorNameToUse 的值为 "red"
print("colorNameToUse 值为: \(colorNameToUse)")

上述代码输出的结果为:

colorNameToUse 值为: red

userDefinedColorName 变量被定义为一个可选的 String 类型,默认值为 nil。由于 userDefinedColorName 是一个可选类型,我们可以使用空合运算符去判断其值。在上一个例子中,通过空合运算符为一个名为 colorNameToUse 的变量赋予一个字符串类型初始值。 由于 userDefinedColorName 值为空,因此表达式 userDefinedColorName ?? defaultColorName 返回 defaultColorName 的值,即 red。

如果你分配一个非空值(non-nil)给 userDefinedColorName,再次执行空合运算,运算结果为封包在 userDefinedColorName 中的值,而非默认值。

userDefinedColorName = String()
userDefinedColorName = "yellow"

colorNameToUse = userDefinedColorName ?? defaultColorName
print("colorNameToUse 值为: \(colorNameToUse)") // userDefinedColorName 的值不为空,所以 colorNameToUse 的值为 "yellow"

上述代码输出的结果为:

colorNameToUse 值为: yellow

区间运算符

闭区间运算符

闭区间运算符(a...b)定义一个包含从 a 到 b(包括 a 和 b)的所有值的区间。a 的值不能超过 b。闭区间运算符在迭代一个区间的所有值时是非常有用的,如在 for-in 循环中:

for index in 1...5 {
	print("\(index) * 5 = \(index * 5)")
}

上述代码输出结果为:

1 * 5 = 5
2 * 5 = 10
3 * 5 = 15
4 * 5 = 20
5 * 5 = 25

半开区间运算符

半开区间运算符(a..<b)定义一个从 a 到 b 但不包括 b 的区间。 之所以称为半开区间,是因为该区间包含第一个值而不包括最后的值。

半开区间的实用性在于当你使用一个从 0 开始的列表(如数组)时,非常方便地从0数到列表的长度。

let names = ["Anna", "Alex", "Brian", "Jack"]
let count = names.count
for i in 0..<count {
	print("第 \(i + 1) 个人叫 \(names[i])")
}

上述代码输出结果为:

1 个人叫 Anna2 个人叫 Alex3 个人叫 Brian4 个人叫 Jack

单侧区间运算符

闭区间操作符有另一个表达形式,可以表达往一侧无限延伸的区间 —— 例如,一个包含了数组从索引 2 到结尾的所有值的区间。在这些情况下,你可以省略掉区间操作符一侧的值。这种区间叫做单侧区间,因为操作符只有一侧有值。例如:

let names = ["Anna", "Alex", "Brian", "Jack"]

for name in names[2...] {
    print("[2...] -- \(name)");
}

for name in names[...2] {
    print("[...2] -- \(name)");
}

上述代码输出结果为:

[2...] -- Brian
[2...] -- Jack

[...2] -- Anna
[...2] -- Alex
[...2] -- Brian

半开区间操作符也有单侧表达形式,附带上它的最终值。就像你使用区间去包含一个值,最终值并不会落在区间内。例如:

for name in names[..<2] {
    print("[..<2] -- \(name)");
}

上述代码输出结果为:

[..<2] -- Anna
[..<2] -- Alex

单侧区间不止可以在下标里使用,也可以在别的情境下使用。你不能遍历省略了初始值的单侧区间,因为遍历的开端并不明显。你可以遍历一个省略最终值的单侧区间;然而,由于这种区间无限延伸的特性,请保证你在循环里有一个结束循环的分支。你也可以查看一个单侧区间是否包含某个特定的值,就像下面展示的那样:

let range = ...5
let result1 = range.contains(7)   // false
let result2 = range.contains(4)   // true
let result3 = range.contains(-1)  // true

print("result1: \(result1)")
print("result2: \(result2)")
print("result3: \(result3)")

上述代码输出结果为:

result1: false
result2: true
result3: true

逻辑运算符

逻辑运算符的操作对象是逻辑布尔值。Swift 支持基于 C 语言的三个标准逻辑运算。

  • 逻辑非(!a)
  • 逻辑与(a && b)
  • 逻辑或(a || b)

逻辑非运算符

逻辑非运算符(!a)对一个布尔值取反,使得 truefalsefalsetrue
它是一个前置运算符,需紧跟在操作数之前,且不加空格。读作 非 a ,例子如下:

let allowedEntry = false
if !allowedEntry {
	print("ACCESS DENIED")
}
// 输出“ACCESS DENIED”

上述代码输出结果为:

ACCESS DENIED

if !allowedEntry 语句可以读作「如果非 allowedEntry」,接下一行代码只有在「非 allowedEntry」为 true,即 allowEntry 为 false 时被执行。

在示例代码中,小心地选择布尔常量或变量有助于代码的可读性,并且避免使用双重逻辑非运算,或混乱的逻辑语句。

逻辑与运算符

逻辑与运算符(a && b)表达了只有 a 和 b 的值都为 true 时,整个表达式的值才会是 true。

只要任意一个值为 false,整个表达式的值就为 false。事实上,如果第一个值为 false,那么是不去计算第二个值的,因为它已经不可能影响整个表达式的结果了。这被称做短路计算(short-circuit evaluation)。

以下例子,只有两个 Bool 值都为 true 的时候才允许进入 if:

let enteredDoorCode = true
let passedRetinaScan = false
if enteredDoorCode && passedRetinaScan {
	print("Welcome!")
} else {
	print("ACCESS DENIED")
}
// 输出“ACCESS DENIED”

上述代码输出结果为:

ACCESS DENIED

逻辑或运算符

逻辑或运算符(a || b)是一个由两个连续的 | 组成的中置运算符。它表示了两个逻辑表达式的其中一个为 true,整个表达式就为 true。

同逻辑与运算符类似,逻辑或也是「短路计算」的,当左端的表达式为 true 时,将不计算右边的表达式了,因为它不可能改变整个表达式的值了。

以下示例代码中,第一个布尔值(hasDoorKey)为 false,但第二个值(knowsOverridePassword)为 true,所以整个表达是 true,于是允许进入:

let hasDoorKey = false
let knowsOverridePassword = true
if hasDoorKey || knowsOverridePassword {
	print("Welcome!")
} else {
	print("ACCESS DENIED")
}
// 输出“Welcome!”

上述代码输出结果为:

Welcome!

逻辑运算符组合计算

我们可以组合多个逻辑运算符来表达一个复合逻辑:

let enteredDoorCode = true
let passedRetinaScan = false
let hasDoorKey = false
let knowsOverridePassword = true

if enteredDoorCode && passedRetinaScan || hasDoorKey || knowsOverridePassword {
	print("Welcome!")
} else {
	print("ACCESS DENIED")
}
// 输出“Welcome!”

上述代码输出结果为:

Welcome!

※注意:
Swift 逻辑操作符 &&|| 是左结合的,这意味着拥有多元逻辑操作符的复合表达式优先计算最左边的子表达式。

位运算符

位运算符用来对二进制位进行操作,~,&,|,^分别为取反,按位与与,按位与或,按位与异或运算,如下表实例:

pqp & qp | qp^q
00000
01011
11110
10011

假设:A = 0011 1100,B = 0000 1101

运算符描述图解实例
&按位与。按位与运算符&对两个数进行操作,然后返回一个新的数,这个数的每个位都需要两个输入数的同一位都为1时才为1按位与(A & B) 结果为 12,二进制为 00001100
|按位或。按位或运算符|比较两个数,然后返回一个新的数,这个数的每一位设置1的条件是两个输入数的同一位都不为0(即任意一个为1,或都为1)按位或(A | B) 结果为 61,二进制为 00111101
^按位异或。按位异或运算符^比较两个数,然后返回一个数,这个数的每个位设为1的条件是两个输入数的同一位不同,如果相同就设为0按位异或(A ^B) 结果为 49,二进制为 00110001
~按位取反运算符~对一个操作数的每一位都取反按位取反(~A ) 结果为 -61,二进制为 11000011
<<按位左移。左移操作符<<将操作数的所有位向左移动指定的位数下图展示了11111111 << 1(11111111 左移一位)的结果。蓝色数字表示被移动位,灰色表示被丢弃位,空位用橙色的0填充按位左移A << 2 结果为 240,二进制为 11110000
>>按位右移。右移操作符>>将操作数的所有位向右移动指定的位数下图展示了11111111 >> 1(11111111 右移一位)的结果。蓝色数字表示被移动位,灰色表示被丢弃位,空位用橙色的0填充按位右移A >> 2 结果为 15,二进制为 00001111

示例:

        func bitwiseOperator() {
        
        let A = 60  // 二进制为 0011 1100
        let B = 13  // 二进制为 0000 1101
                
        let binaryA = insertPlaceholderZero(initialString: String(A, radix: 2));
        let binaryB = insertPlaceholderZero(initialString: String(B, radix: 2));
        
        let resultAnd = insertPlaceholderZero(initialString: String(A&B, radix: 2));
        let resultOr = insertPlaceholderZero(initialString: String(A|B, radix: 2));
        let resultEctopic = insertPlaceholderZero(initialString: String(A^B, radix: 2));
        let resultNegation = String(~A, radix: 2);
                
        print("\(binaryA) & \(binaryB) 的结果为: \(resultAnd)");
        print("\(binaryA) | \(binaryB) 的结果为: \(resultOr)");
        print("\(binaryA) ^ \(binaryB) 的结果为: \(resultEctopic)");
        print("~\(binaryA) 的结果为: \(resultNegation)");
    }
    
    func insertPlaceholderZero(initialString: String) -> String {
        
        var resultString = String();
        var newInitialString = String();
        
        newInitialString = initialString.filter{ $0 != "-" };
        
        let bitesNum = Int(newInitialString.count / 8);
                
        let placeholderCount = (bitesNum + 1) * 8 - newInitialString.count;
        
        for _ in 0 ..< placeholderCount {
            
            resultString.append("0");
        }
        
        resultString = resultString + newInitialString;
        
        resultString = addSpaceSeparator(initialString: resultString);
        
        if (initialString.contains("-")) {
            
            resultString.insert(contentsOf: "-", at: resultString.startIndex);
        }
                
        return resultString;
    }
    
    func addSpaceSeparator(initialString: String) -> String {
        
        var resultString = String();
        
        var characterArray = Array(initialString);
        characterArray = characterArray.reversed();
        
        for index in 0..<initialString.count {
            
            let chara = characterArray[index];
            resultString.insert(chara, at: resultString.startIndex);
                
            if ((index + 1) % 4 == 0 && index != (characterArray.count - 1)) {
                    
                resultString.insert(" ", at: resultString.startIndex);
            }
        }
                
        return resultString;
    }

上述代码输出结果为:

0011 1100 & 0000 1101 的结果为: 0000 1100
0011 1100 | 0000 1101 的结果为: 0011 1101
0011 1100 ^ 0000 1101 的结果为: 0011 0001
~0011 1100 的结果为: -111101

运算符优先级

在一个表达式中可能包含多个有不同运算符连接起来的、具有不同数据类型的数据对象;由于表达式有多种运算,不同的运算顺序可能得出不同结果甚至出现错误运算错误,因为当表达式中含多种运算时,必须按一定顺序进行结合,才能保证运算的合理性和结果的正确性、唯一性。

优先级从上到下依次递减,最上面具有最高的优先级,逗号操作符具有最低的优先级。

相同优先级中,按结合顺序计算。大多数运算是从左至右计算,只有三个优先级是从右至左结合的,它们是单目运算符、条件运算符、赋值运算符。

基本的优先级需要记住:

  • 指针最优,单目运算优于双目运算。如正负号。
  • 先乘除(模),后加减。
  • 先算术运算,后移位运算,最后位运算。请特别注意:1 << 3 + 2 & 7 等价于 (1 << (3 + 2))&7
  • 逻辑运算最后计算

Swift 运算符优先级 (从高到低):

运算符实例
位运算符>> &<< &>> >>
乘法运算符&* % & * /
加法运算符&+ &- + - ^
区间运算符…< …
类型转换运算符is as
nil 的聚合运算??
比较运算符!= > < >= <= === ==
逻辑与运算符&&
逻辑或运算符||
波浪箭头~>
三元运算符?:
箭头函数( )
赋值运算符|= %= /= &<<= &>>= &= *= >>= <<= ^= += -=

使用括号来明确优先级

为了一个复杂表达式更容易读懂,在合适的地方使用括号来明确优先级是很有效的,虽然它并非必要的。在上个关于门的权限的例子中,我们给第一个部分加个括号,使它看起来逻辑更明确:

if (enteredDoorCode && passedRetinaScan) || hasDoorKey || knowsOverridePassword {
	print("Welcome!")
} else {
	print("ACCESS DENIED")
}
// 输出“Welcome!”

这括号使得前两个值被看成整个逻辑表达中独立的一个部分。虽然有括号和没括号的输出结果是一样的,但对于读代码的人来说有括号的代码更清晰。可读性比简洁性更重要,请在可以让你代码变清晰的地方加个括号吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/920046.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

二手手机回收小程序,一键便捷高效回收

随着科技的不断升级&#xff0c;智能手机也在快速进行更新换代&#xff0c;出现了大量的闲置手机&#xff0c;这为二手手机市场提供了巨大的发展空间&#xff01; 经过手机回收市场的快速发展&#xff0c;二手手机回收已经成为了消费者的新选择&#xff0c;既能够减少手机的浪…

网安瞭望台第2期:零日漏洞密集爆发、2024年常见网络安全漏洞类型及分析

国内外要闻 Ubuntu 服务器 Needrestart 软件包惊现严重安全漏洞 近日&#xff0c;Ubuntu 服务器&#xff08;自 21.04 版本起默认安装&#xff09;的 Needrestart 软件包被曝存在多个可追溯至数十年前的安全漏洞。这些漏洞允许本地攻击者在无需用户交互的情况下获取根…

反转链表、链表内指定区间反转

反转链表 给定一个单链表的头结点pHead&#xff08;该头节点是有值的&#xff0c;比如在下图&#xff0c;它的val是1&#xff09;&#xff0c;长度为n&#xff0c;反转该链表后&#xff0c;返回新链表的表头。 如当输入链表{1,2,3}时&#xff0c;经反转后&#xff0c;原链表变…

AWTK 最新动态:支持鸿蒙系统(HarmonyOS Next)

HarmonyOS是全球第三大移动操作系统&#xff0c;有巨大的市场潜力&#xff0c;在国产替代的背景下&#xff0c;机会多多&#xff0c;AWTK支持HarmonyOS&#xff0c;让AWTK开发者也能享受HarmonyOS生态的红利。 AWTK全称为Toolkit AnyWhere&#xff0c;是ZLG倾心打造的一套基于C…

CSS+JQuery 实现弹力球效果,碰到屏幕边框弹回

实现弹力球效果&#xff0c;碰到屏幕边框弹回&#xff0c;效果如下 代码如下&#xff1a; <img src"../image/ball.png" alt"" class"ball"> <style>.ball {position: fixed;top: 50vh;left: 50vw;width: 15vw;height: 15vw;border…

银河麒麟V10-SP1-x86_64离线安装Docker

由于要推广信创&#xff0c;需要把Milvus向量数据库从别的平台迁移到信创平台上&#xff0c;为了能顺利迁移&#xff0c;在迁移前需要做一系列用到的功能软件的安装与运行的测试&#xff0c;由于Milvus向量数据库依赖于Docker运行&#xff0c;以及工作性质的要求&#xff0c;只…

vue2 webpack分包实现首屏加载优化

项目打包后得到的vendor.js文件过大&#xff0c;进行拆包以减少文件的大小&#xff0c;具体实现如下&#xff1a; webpack3.x使用new webpack.optimize.CommonsChunkPlugin打包文件分割优化加载 修改项目build内的webpack.prod.conf.js文件&#xff0c;将项目中的需要拆的文件…

125.验证回文串-力扣(LeetCode)

题目&#xff1a; 解题思路&#xff1a; 首先进行移除非字母数字字符&#xff0c;并将大写字符转换为小写字符的操作。这个过程中&#xff0c;主要利用快慢指针的方式来进行移除操作&#xff0c;通过加32将大写字符转换为小写字符。完成后&#xff0c;将前一半的数据与后一半的…

ftrack 24.10全面升级:Autodesk Flame集成与多项新功能性能改进将发布

管理复杂项目绝非易事&#xff0c;但ftrack Studio的最新更新旨在简化这一过程。我们设计了这些增强功能&#xff0c;以优化大家的工作流、提高可用性&#xff0c;并让你们有更多时间专注于创意工作。 让我们来看看都有什么新内容吧&#xff01; ​增强功能来优化工作流 轻松…

深度学习基础—Bleu得分

引言 机器翻译任务中&#xff0c;通常会需要评价指标来评估机器翻译的好坏。仅通过统计翻译词在标准翻译中出现的次数这种方式很不合理&#xff0c;就需要用到Bleu得分来进行评估。 1.n-gram&#xff08;N元组&#xff09; 假设要翻译&#xff1a;Le chat est sur le tapis&am…

【MySQL】InnoDB 基本了解+存储结构

目录​​​​​​​ InnoDB简单了解 InnoDB的特性 InnoDB架构 InnoDB存储引擎创建表的数据文件 MySQL存储结构 表空间文件 用户数据在表空间中存储方式 使用页数据存储单元的原因 数据页 区 表中数据少时如果避免空间浪费 区组 段 页 数据行的组成 快速定位数据…

鸿蒙中服务卡片数据的获取和渲染

1. 2.在卡片中使用LocalStorageProp接受传递的数据 LocalStorageProp("configNewsHead") configNewsHeadLocal: ConfigNewsHeadInfoItem[] [] 注意&#xff1a;LocalStorageProp括号中的为第一步图片2中的键 3.第一次在服务卡片的第一个卡片中可能会获取不到数据…

《Django 5 By Example》阅读笔记:p211-p236

《Django 5 By Example》学习第7天&#xff0c;p211-p236总结&#xff0c;总计26页。 一、技术总结 1.messages(消息推送) django.contrib.messages。 2.OAuth 2 Django里使用的是social-app-django这个package进行认证操作。 3.开发环境使用HTTPS 使用django-extension…

机器学习(贝叶斯算法,决策树)

朴素贝叶斯分类 贝叶斯分类理论 假设现有两个数据集&#xff0c;分为两类 我们现在用p1(x,y)表示数据点(x,y)属于类别1(图中红色圆点表示的类别)的概率&#xff0c;用p2(x,y)表示数据点(x,y)属于类别2(图中蓝色三角形表示的类别)的概率&#xff0c;那么对于一个新数据点(x,y)…

《设计模式》创建型模式总结

目录 创建型模式概述 Factory Method: 唯一的类创建型模式 Abstract Factory Builder模式 Prototype模式 Singleton模式 最近在参与一个量化交易系统的项目&#xff0c;里面涉及到用java来重构部分vnpy的开源框架&#xff0c;因为是框架的搭建&#xff0c;所以会涉及到像…

【Bug合集】——Java大小写引起传参失败,获取值为null的解决方案

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01; 希望本文内容能够帮助到你&#xff01;&#xff01; 目录 一&#xff1a;本文面向的人群 二&#xff1a;错误场景引入 三&#xff1a;正确场景引入 四&#xf…

论文阅读--supervised learning with quantum enhanced feature spaces

简略摘要 量子算法实现计算加速的核心要素是通过可控纠缠和干涉利用指数级大的量子态空间。本文在超导处理器上提出并实验实现了两种量子算法。这两种方法的一个关键组成部分是使用量子态空间作为特征空间。只有在量子计算机上才能有效访问的量子增强特征空间的使用为量子优势提…

网络安全之信息收集-实战-1

请注意&#xff0c;本文仅供合法和授权的渗透测试使用&#xff0c;任何未经授权的活动都是违法的。 实战&#xff1a;补天公益src“吉林通用航空职业技术学院” 奇安信&#xff5c;用户登录https://www.butian.net/Loo/submit?cid64918 域名或ip&#xff1a;https://www.jlth…

jenkins离线安装插件

Jenkins 在线安装插件失败 报错&#xff1a; Caused: java.io.IOException: Failed to load https://updates.jenkins.io/download/plugins/login-theme/244.vd67c77f0c4c8/login-theme.hpi to /var/jenkins_home/plugins/login-theme.jpi.tmpat hudson.model.UpdateCenter$Up…

MATLAB的语音信号采集与处理分析

1、基本描述 本文描述的系统是一个全面而精细的语音信号处理平台&#xff0c;核心组件由MATLAB的高级功能模块构建而成。系统的核心交互界面&#xff0c;借助于MATLAB的uifigure函数搭建&#xff0c;为用户提供了一个直观且响应迅速的操作环境。通过设计的GUI按钮&#xff0c;如…