【HCIP]——OSPF综合实验

题目

实验需求

根据上图可得,实验需求为:

  1.R5作为ISP:其上只能配置IP地址;R4作为企业边界路由器,出口公网地址需要通过PPP协议获取,并进行CHAP认证。(PS:因PPP协议尚未学习,在此次实验中不使用)
  2.每个OSPF邻居ID 基于IP地址172.16.0.0/16划分;
  3.所有设备均可访问R5的环回;
  4.减少LSA的数量,加快收敛,保障更新安全;
  5.全网可达。

实验思路

  1.首先确定网络拓扑结构,根据实验需求搭建网络拓扑图,确定每台路由器的接口以及互联关系。

  2.子网划分与OSPF配置

    基于IP地址划分OSPF邻居ID:

       根据IP地址172.16.0.8/16划分OSPF区域,确保每个邻居ID唯一。

        配置OSPF路由协议,并在每个路由器上配置相应的网络命令。

  3.配置R5作为ISP

  4.网络优化

    减少LSA数量:

      通过合理规划OSPF区域,使用区域划分来减少LSA的数量。

      使用路由汇总来减少LSA的数量。

    加快收敛:

     配置OSPF的快速收敛特性,如调整Hello和Dead间隔。

     确保网络中无环路,避免不必要的路由更新。

    保障更新安全:

      使用OSPF的认证功能,如明文认证或MD5认证,来保障路由更新安全。

 5.配置NAT保证私网能正常访问公网

6.确保全网可达

    测试连通性:

      使用Ping命令测试网络中每个设备之间的连通性。

      确认所有设备均能访问R5的环回接口。 

  

实验步骤

子网划分与OSPF配置

子网划分

——对五个区域基于IP地址172.16.0.0进行划分,再对各个区域内进行详细的IP地址划分。

如图:

具体划分如下所示:

172.16.0.0/16

172.16.0.0/19 ----area0

  172.16.0.0/24----骨干

  172.16.0.0/30----R3-R4

  172.16.0.4/30----R4-R6

  172.16.0.8/30----R4-R7

  45.0.0.0/30----R4-R5

  100.1.1.0/24----R5环回

172.16.32.0/19----area1

  172.16.32.0/24----R1

  172.16.33.0/24----R2

  172.16.34.0/24----R3

  172.16.35.0/24----骨干

    172.16.35.0/29

  

  

172.16.64.0/19----area2

  172.16.64.0/24----R6环回

  172.16.66.0/30----R6-R11

  172.16.65.0/24----R11环回

  172.16.66.4/30----R11-R12

172.16.96.0/19----area3

  172.16.96.0/24----R7环回

  172.16.98.0/30----R7-R8

  172.16.97.0/24----R8环回

  172.16.98.4/30----R8-R9

172.16.128.0/19----area4

  172.16.128.0/24----R9环回

  172.16.130.0/30----R9-R10

  172.16.129.0/24----R10环回

rip

10.1.1.0/24

10.1.2.0/24

配置IP地址同时进行OSPF宣告

PS:R4的S接口是连接公网的,不可宣告!

R1

R2

R3

R4

ISP

R6

R7

R8

R9

R10

R11

R12

OSPF配置

在各个路由器上进行OSPF配置,由于area 4 是远离骨干的特殊区域所以不能直接进行宣告,且由于area 3需要进行优化,所以让R9成为ASBR设备进行双向重发布(不使用Vink是因为使用Vink可能会产生换路问题,且area 3需要优化),在配置R12时顺便将RIP同时进行配置与宣告。

R1
 

[r1]ospf 1 router-id 1.1.1.1
[r1-ospf-1]a 1
[r1-ospf-1-area-0.0.0.1]network 172.16.32.1 0.0.0.0

[r1-ospf-1-area-0.0.0.1]network 172.16.35.1 0.0.0.0

R2

[r2]ospf 1 rou    
[r2]ospf 1 router-id 2.2.2.2
[r2-ospf-1]a 1  
[r2-ospf-1-area-0.0.0.1]network 172.16.33.1 0.0.0.0
[r2-ospf-1-area-0.0.0.1]network 172.16.35.2 0.0.0.0

R3

[r3]ospf 1 rou    
[r3]ospf 1 router-id 3.3.3.3
[r3-ospf-1]a 1
[r3-ospf-1-area-0.0.0.1]network 172.16.35.3 0.0.0.0
[r3-ospf-1-area-0.0.0.1]network 172.16.34.1 0.0.0.0

[r3-ospf-1-area-0.0.0.0]network 172.16.0.1 0.0.0.0

R4

[r4]ospf 1 router-id 4.4.4.4
[r4-ospf-1]a 0
[r4-ospf-1-area-0.0.0.0]network 172.16.0.2 0.0.0.0
[r4-ospf-1-area-0.0.0.0]network 172.16.0.5 0.0.0.0

[r4-ospf-1-area-0.0.0.0]network 172.16.0.9 0.0.0.0

R6

[r6]ospf 1 router-id 6.6.6.6
[r6-ospf-1]a 0
[r6-ospf-1-area-0.0.0.0]network 172.16.0.6 0.0.0.0
[r6-ospf-1-area-0.0.0.2]network 172.16.66.1 0.0.0.0

[r6-ospf-1-area-0.0.0.2]network 172.16.64.1 0.0.0.0

R7

[r7]ospf 1 router-id 7.7.7.7
[r7-ospf-1]a 0
[r7-ospf-1-area-0.0.0.0]network 172.16.0.10 0.0.0.0
[r7-ospf-1]a 3

[r7-ospf-1-area-0.0.0.3]network 172.16.96.1 0.0.0.0

[r7-ospf-1-area-0.0.0.3]network 172.16.98.1 0.0.0.0

R8

[r8]ospf 1 router-id 8.8.8.8
[r8-ospf-1]a 3

[r8-ospf-1-area-0.0.0.3]network 172.16.98.2 0.0.0.0

[r8-ospf-1-area-0.0.0.3]network 172.16.97.1 0.0.0.0

[r8-ospf-1-area-0.0.0.3]network 172.16.98.5 0.0.0.0

R9

[r9]ospf 2 router-id 9.9.9.9

[r9-ospf-2]area 4

[r9-ospf-2-area-0.0.0.4]network 172.16.128.1 0.0.0.0

[r9-ospf-2-area-0.0.0.4]network 172.16.130.1 0.0.0.0

R10

[r10]ospf 1 router-id 10.10.10.10

[r10-ospf-1]a 4

[r10-ospf-1-area-0.0.0.4]network 172.16.129.1 0.0.0.0

[r10-ospf-1-area-0.0.0.4]network 172.16.130.2 0.0.0.0

R11

[r11]ospf 1 router-id 11.11.11.11

[r11-ospf-1]a 2

[r11-ospf-1-area-0.0.0.2]network 172.16.65.1 0.0.0.0

[r11-ospf-1-area-0.0.0.2]network 172.16.66.5 0.0.0.0

R12

[r12]ospf 1 router-id 12.12.12.12

[r12-ospf-1]a 2

[r12-ospf-1-area-0.0.0.2]network 172.16.66.6 0.0.0.0

[r12-rip-1]ver 2

[r12-rip-1]network 10.0.0.0

检查OSPF邻居

R1

R2

R3

R4

R6

R7

R8

R9

R10

R11

R12

连通性测试

由于该实验设备太多,故我们举例测试,不展示所有设备的测试

R1pingR3的环回

R3pingR6的环回

配置缺省路由

R4

在R4上配置一条0.0.0.0的缺省路由指向R5的 4/0/0方向

[R4]ip route-static 0.0.0.0 0 45.0.0.2

通过pingR5的环回检测是否可通,可通则没问题

PS:当前不用急着去下放R4的缺省路由,因为下放路由操作是在私网全部做完(优化后)时再去下放

OSPF优化部分

路由汇总

域间路由汇总

因为域间路由汇总是针对骨干区域(area 0)的优化,所以配置域间路由汇总的应该是与area 0直连(直接相连的)的区域,即区域1、2、3;那么则在这三个区域的ABR上进行配置:

Area 1的ABR

[r3]ospf 1

[r3-ospf-1]a 1 ---配置路由汇总在区域1做的原因是因为R3上的明细路由是通过区域1的1/2类LSA学到的

[r3-ospf-1-area-0.0.0.1]abr-summary 172.16.64.0 255.255.224.0

Area 2的ABR

[r6]ospf 1

[r6-ospf-1]a 2

[r6-ospf-1-area-0.0.0.2]abr-summary 172.16.64.0 255.255.224.0


Area 3的ABR

[r7]ospf 1

[r7-ospf-1]a 3

[r7-ospf-1-area-0.0.0.3]abr-summary 172.16.96.0 255.255.224.0

查表

在R4上查OSPF表,发现三个区域已经汇总

域外路由汇总

非直连的远离骨干区域则为域外路由汇总

RIP区域的ASBR

[r12]ospf 1

[r12-ospf-1]asbr-summary 10.1.0.0 255.255.252.0

OSPF 2区域的ASBR 

[r9]ospf 1

[r9-ospf-1]asbr-summary 172.16.128.0 255.255.224.0

查表 

在R4上查OSPF表,发现RIP区域和OSPF 2区域都已汇总

做特殊区域 

区域1可以做成完全末梢区域、区域2可以做成完全NSSA区域、区域3也可以做成完全NSSA区域、区域4则不能做特殊区域(因为区域4上ospf 2的骨干区域骨干区域不能做成特殊区域!!!

Area 1

----- R1 -----
[r1]ospf 1
[r1-ospf-1]a 1
[r1-ospf-1-area-0.0.0.1]stub 
 
 
----- R2 -----
[r2]ospf 1
[r2-ospf-1]a 1
[r2-ospf-1-area-0.0.0.1]stub 
 
 
----- R3 -----
[r3]ospf 1
[r3-ospf-1]a 1
[r3-ospf-1-area-0.0.0.1]stub no-summary 

Area 2 

----- R6 -----
[r6]ospf 1
[r6-ospf-1]a 2
[r6-ospf-1-area-0.0.0.2]nssa no-summary
 
 
----- R11 -----
[r11]ospf 1
[r11-ospf-1]a 2
[r11-ospf-1-area-0.0.0.2]nssa
 
 
----- R12 -----
[r12]ospf 1
[r12-ospf-1]a 2
[r12-ospf-1-area-0.0.0.2]nssa

Area 3

----- R7 -----
[r7]ospf 1
[r7-ospf-1]a 3
[r7-ospf-1-area-0.0.0.3]nssa  no-summary
 
 
----- R8 -----
[r8]ospf 1
[r8-ospf-1]a 3
[r8-ospf-1-area-0.0.0.3]nssa 
 
 
----- R9 -----
[r9]ospf 1
[r9-ospf-1]a 3
[r9-ospf-1-area-0.0.0.3]nssa 

查表 

在R2/12/9上

做完特殊区域后的缺省下放 

在R9上下放缺省(OSPF 2)

----- R9 -----
[r9]ospf 2
[r9-ospf-2]default-route-advertise

下放完毕,我们在R10上查看是否有缺省路由

有,则下方成功 

但因为有了缺省,R10能通过缺省获取R9的所有路由,所以R9上的一个重发布就不用执行了,故我们undo一下

[r9-ospf-2]undo  import-route ospf 1

在R4上下放缺省

目前我们做完了私网的所有包括优化,所以我们可以正式下放缺省路由了

[r4]ospf 1    
[r4-ospf-1]default-route-advertise

那么这样对于与R4直连的区域而言,就有了缺省,下面举例R3的查表:

加快收敛配置 

修改network-type类型

加快收敛操作即把此图的多个两个端点链路修改成P2P类型,如遇一点对多点,则修改为P2MP类型即可,因为P2P不需要选举DR和BDR,这样即可加快收敛

----- R3-R1/2 -----
[r3]int g0/0/0    
[r3-GigabitEthernet0/0/0]ospf network-type p2mp
[r1]int g0/0/0    
[r1-GigabitEthernet0/0/0]ospf network-type p2mp
[r2]int g0/0/0
[r2-GigabitEthernet0/0/0]ospf network-type p2mp
 
 
----- R3-R4 -----
[r3]int g0/0/1
[r3-GigabitEthernet0/0/1]ospf network-type p2p
[r4]int g0/0/1
[r4-GigabitEthernet0/0/1]ospf network-type p2p
 
 
----- R4-R6 -----
[r4]int g0/0/2
[r4-GigabitEthernet0/0/2]ospf network-type p2p
[r6]int g0/0/1
[r6-GigabitEthernet0/0/1]ospf network-type p2p
 
 
----- R4-R7 -----
[r4]int g0/0/0
[r4-GigabitEthernet0/0/0]ospf network-type p2p
[r7]int g0/0/0
[r7-GigabitEthernet0/0/0]ospf network-type p2p
 
 
----- R6-R11 -----
[r6]int g0/0/0
[r6-GigabitEthernet0/0/0]ospf network-type p2p
[r11]int g0/0/0
[r11-GigabitEthernet0/0/0]ospf network-type p2p
 
 
----- R11-R12 -----
[r11-GigabitEthernet0/0/0]int g0/0/1
[r11-GigabitEthernet0/0/1]ospf network-type p2p
[r12]int g0/0/0
[r12-GigabitEthernet0/0/0]ospf network-type p2p
 
 
----- R7-R8 -----
[r7]int g0/0/1
[r7-GigabitEthernet0/0/1]ospf network-type p2p
[r8]int g0/0/0
[r8-GigabitEthernet0/0/0]ospf network-type p2p
 
 
----- R8-R9 -----
[r8-GigabitEthernet0/0/0]int g0/0/1
[r8-GigabitEthernet0/0/1]ospf network-type p2p
[r9]int g0/0/0
[r9-GigabitEthernet0/0/0]ospf network-type p2p
 
 
----- R9-R10 -----
[r9]int g0/0/1
[r9-GigabitEthernet0/0/1]ospf network-type p2p
[r10]int g0/0/0
[r10-GigabitEthernet0/0/0]ospf network-type p2p

修改hello时间 

改完network-type后确实加快了收敛,但是P2P和P2MP类型的hello时间和dead时间是比ospf原本的要长的,所以为了完成加快收敛的要求,我们还要修改其hello与dead时间(但修改只用改hello时间,因为dead时间随hello时间变化,无需修改) 

由于修改hello时间的配置思路与上面的“修改network-type类型”思路类似,所以这里就只展示R3-R1/2区域的修改配置指令,其余路由器配置同理,不做赘述

----- R3-R1/2 -----
[r1]int g0/0/0
[r1-GigabitEthernet0/0/0]ospf timer hello 10 -- hello时间统一修改成10s,如还想再快,缩短时间即可
[r2]int g0/0/0
[r2-GigabitEthernet0/0/0]ospf timer hello 10
[r3]int g0/0/0
[r3-GigabitEthernet0/0/0]ospf timer hello 10

配置OSPF认证

一般情况下,ospf的认证只在骨干区域0配置即可,故我们在此只配置区域0的

----- Area 0 -----
[r4]ospf 1
[r4-ospf-1]a 0
[r4-ospf-1-area-0.0.0.0]authentication-mode md5 1 cipher  123456
 
[r3]ospf 1
[r3-ospf-1]a 0
[r3-ospf-1-area-0.0.0.0]authentication-mode md5 1 cipher  123456
 
[r6]ospf 1
[r6-ospf-1]a 0
[r6-ospf-1-area-0.0.0.0]authentication-mode md5 1 cipher  123456
 
[r7]ospf 1
[r7-ospf-1]a 0
[r7-ospf-1-area-0.0.0.0]authentication-mode md5 1 cipher  123456

保障更新安全

通过设置密码来保障更新安全

配置NAT

配置NAT来访问外网环境

[r4]acl 2000
[r4-acl-basic-2000]rule permit  source  172.16.0.0   0.0.255.255
 
[r4]int s4/0/1    
[r4-Serial4/0/1]nat outbound 2000

 R1pingISP

R10的环回上进行ping测试 

都可通,则配置无误 

至此,整个OSPF综合实验配置完毕。

如有错误,请多指正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/919141.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

django启动项目报错解决办法

在启动此项目报错: 类似于: django.core.exceptions.ImproperlyConfigured: Requested setting EMOJI_IMG_TAG, but settings are not c启动方式选择django方式启动,以普通python方式启动会报错 2. 这句话提供了对遇到的错误的一个重要线索…

【GeekBand】C++设计模式笔记12_Singleton_单件模式

1. “对象性能” 模式 面向对象很好地解决了 “抽象” 的问题, 但是必不可免地要付出一定的代价。对于通常情况来讲,面向对象的成本大都可以忽略不计。但是某些情况,面向对象所带来的成本必须谨慎处理。典型模式 SingletonFlyweight 2. Si…

计算机网络 (1)互联网的组成

一、互联网的边缘部分 互联网的边缘部分由所有连接在互联网上的主机组成,这些主机又称为端系统(end system)。端系统可以是各种类型的计算机设备,如个人电脑、智能手机、网络摄像头等,也可以是大型计算机或服务器。端系…

电商行业客户服务的智能化:构建高效客户服务知识库

在电商行业,客户服务是提升用户体验和品牌忠诚度的关键。随着数字化转型的深入,构建一个高效的客户服务知识库变得尤为重要。本文将探讨电商行业如何构建客户服务知识库,并分析其在提升服务质量中的作用。 客户服务知识库的重要性 客户服务…

CentOS 9 无法启动急救方法

方法一:通过单用户安全模式启动 开机按上下方向键,选择需要启动的内核,按e键进入配置模式 修改配置 ro 改 rw 删除 rhgb quiet 末尾增加 init/bin/bash 按 Ctrlx 启动单用户模式 如果想重新启动,重启电脑 执行 exec /sbin/in…

数字后端零基础入门系列 | Innovus零基础LAB学习Day11(Function ECO流程)

###LAB 20 Engineering Change Orders (ECO) 这个章节的学习目标是学习数字IC后端实现innovus中的一种做function eco的flow。对于初学者,如果前面的lab还没掌握好的,可以直接跳过这节内容。有时间的同学,可以熟悉掌握下这个flow。 数字后端…

SAM-Med2D 训练完成后boxes_prompt没有生成mask的问题

之前对着这这篇文章去微调SAM_Med2D(windows环境),发现boxes_prompt空空如也。查找了好长时间问题SAM-Med2D 大模型学习笔记(续):训练自己数据集_sam训练自己数据集-CSDN博客 今天在看label2image_test.json文件的时候发现了一些端倪: 官方…

java ssm 同仁堂药品管理系统 在线药品信息管理 医药管理源码jsp

一、项目简介 本项目是一套基于SSM的同仁堂药品管理系统,主要针对计算机相关专业的和需要项目实战练习的Java学习者。 包含:项目源码、数据库脚本、软件工具等。 项目都经过严格调试,确保可以运行! 二、技术实现 ​后端技术&…

使用阿里云快速搭建 DataLight 平台

使用阿里云快速搭建 DataLight 平台 本篇文章由用户 “闫哥大数据” 分享,B 站账号:https://space.bilibili.com/357944741?spm_id_from333.999.0.0 注意:因每个人操作顺序可能略有区别,整个部署流程如果出现出入,以…

如何解决VS Code的Live Share会话中Guest无法看到共享的文件夹?

在 VS Code 的 Live Share 会话中,如果 Guest 无法看到共享的文件夹,如图所示: 可能是因为权限设置、浏览器限制或 Live Share 的配置问题。以下是逐步排查和解决问题的方法: 1. 确保正确共享了文件夹 在主机(Host&a…

.NET 9 运行时中的新增功能

本文介绍了适用于 .NET 9 的 .NET 运行时中的新功能和性能改进。 文章目录 一、支持修剪的功能开关的属性模型二、UnsafeAccessorAttribute 支持泛型参数三、垃圾回收四、控制流实施技术.NET 安装搜索行为性能改进循环优化感应变量加宽Arm64 上的索引后寻址强度降低循环计数器可…

深入解析TK技术下视频音频不同步的成因与解决方案

随着互联网和数字视频技术的飞速发展,音视频同步问题逐渐成为网络视频播放、直播、编辑等过程中不可忽视的技术难题。尤其是在采用TK(Transmission Keying)技术进行视频传输时,由于其特殊的时序同步要求,音视频不同步现…

MongoDB:数据迁移

业余人员学习 第一种:通过MongoDB命令 参考链接: MongoDB的备份(mongodump)与恢复(mongorestore)_MongoDB_脚本之家 MongoDB数据库管理:全面掌握mongodump和mongorestore的备份与恢复技巧_8055096的技术博客_51CTO博客 1.1、首先进入操作命令行,都不需要进入MongoDB […

网络安全练习之 ctfshow_web

文章目录 VIP题目限免(即:信息泄露题)源码泄露前台JS绕过协议头信息泄露robots后台泄露phps源码泄露源码压缩包泄露版本控制泄露源码(git)版本控制泄露源码2(svn)vim临时文件泄露cookie泄露域名txt记录泄露敏感信息公布内部技术文档泄露编辑器…

【俄罗斯方块】

【俄罗斯方块】 C语言实现C实现Java实现Python实现 💐The Begin💐点点关注,收藏不迷路💐 首先把经典的俄罗斯方块简化一下:方块有顺序地从屏幕顶端掉下至底部,当碰到障碍物或底部时停下,同时变成…

优化装配,提升品质:虚拟装配在汽车制造中的关键作用

汽车是各种零部件的有机结合体,因此汽车的装配工艺水平和装配质量直接影响着汽车的质量与性能。在汽车装配过程中,经常会发生零部件间干涉或装配顺序不合理等现象,且许多零部件制造阶段产生的质量隐患要等到实际装配阶段才能显现出来&#xf…

【算法】日期问题(C/C++)

目录 日期问题概述 一、闰年判断 问题描述: 解决方法: 代码实现: 二、回文日期 问题描述: 链接:2867. 回文日期 - AcWing题库 解决方法: 代码实现: 三、日期差值 问题描述&#xff1…

FIFO架构专题-异步FIFO及信号

概述 FIFO按时钟可分为:异步FIFO、同步FIFO。 定义 同步FIFO:读时钟和写时钟都相同的FIFO。同步FIFO内部没有异步处理,因此结构简单,资源占用较少。 异步FIFO:读时钟和写时钟可以不同的FIFO。异步FIFO内部有专门的异…

类和对象(上)--类、类的实例化(对象)、this指针

1.类 1.1定位: 和namespace一样,类也有类域。同样起到既保护又限制的功能。别人不能随意访问类里的东西,得通过特定的方式来访问(访问方法和命名空间域一样,三种方法)。 1.2作用 在C语言中,…

Leetcode 路径总和

使用递归算法 class Solution {public boolean hasPathSum(TreeNode root, int targetSum) {// 如果节点为空,返回falseif (root null) {return false;}// 如果是叶子节点,检查路径和是否等于目标值if (root.left null && root.right null) …