基于视觉智能的时间序列基础模型

图片

GitHub链接:ViTime: A Visual Intelligence-Based Foundation Model for Time Series Forecasting

论文链接:https://github.com/IkeYang/ViTime

前言

作者是来自西安理工大学,西北工业大学,以色列理工大学以及香港城市大学的研究者。

1. 研究动机:

近年来,深度学习模型在特定数据集上表现优异,但它们往往需要大量的领域特定数据进行训练,缺乏跨域泛化能力。这一挑战促使研究人员开始探索构建基础模型(Foundation Model)的可能性,以期望通过预训练获得通用的时间序列理解能力,进而实现跨域零样本(Zero-shot)或少样本(Few-shot)学习。

然而,现有的TSF基础模型面临着两个重大挑战:

1) 数值建模的局限性:

现有的TSF模型,包括基础模型,主要关注于直接拟合数值时间序列数据。这意味着这些模型的主要信息载体是时间维度上的数值关系。然而,人类在观察和预测趋势时,往往更倾向于通过视觉表征来理解数据,而非直接处理原始数值。

研究表明,人脑在处理视觉信息方面远比处理数值数据更为高效。人脑在处理视觉信息时的效率显著高于处理数值数据,并且视觉皮层能够快速识别模式、形状和颜色,使得图像和视频的处理速度远快于文本和数字。这些发现自然而然地引发了一个假设性问题:在通往人工通用智能(AGI)的道路上,采用视觉智能方法进行时间序列建模是否会比传统的数值方法更加有效?

2) 训练数据的局限性:

目前的基础模型训练数据通常由大规模实际世界数据集构成。这引发了一个关键问题:这些大规模实际数据集是否能全面捕捉普适时间序列模式的多样性?换言之,一个真正通用的时间序列基础模型应具备何种基本能力,才能应对广泛的时间序列问题?

为了应对这些挑战,作者提出了一种创新的视觉智能基础模型 ViTime(Visual Time Foundation Model)。ViTime旨在从视觉智能的角度开创时间序列基础模型研究的新范式。此外,作者还引入了一种新颖的时间序列数据生成方法 RealTS(Real Time Series),该方法将时间序列分析的基础知识归类为"趋势"和"周期性",并在ViTime的训练过程中合成训练数据。ViTime的核心思想是将数值时间序列转换为二值图像,从而将数值时间相关性转化为二值像素空间相关性。这种方法与人脑处理时间序列数据的方式高度契合。大量实验结果表明,当应用于各种未见过的跨域数据集时,所提出的ViTime模型能够达到最先进的零样本性能,在某些情况下甚至超越了最佳的单独训练的监督模型。更值得注意的是,只需使用10%的领域数据进行微调,ViTime就能够在性能上超越使用100%领域数据的最新监督模型。

研究方法

ViTime的研究方法包括几个关键创新,下面我们将详细介绍每个组成部分:

a) 视觉表征:

ViTime的核心创新在于将数值时间序列转换为二值图像。这一转换过程不仅仅是简单的可视化,而是将时间序列的本质特征编码到视觉空间中。如下图所示。原文包含相应的空间定义函数、映射函数以及相关定理,欢迎大家阅读。

图片

b) 真实时间序列(RealTS)合成:

为了解决现有大规模实际数据集可能无法全面捕捉时间序列多样性的问题,作者提出了RealTS数据生成方法。RealTS的核心思想是将时间序列的基础知识分解为两个关键组成部分:趋势(Trend)和周期性(Periodicity)。其定义了多个时间序列生成模式,采用随机生成方式产生训练数据。

图片

图片

c) 模型架构:

ViTime的模型架构由三个主要模块组成,视觉时间分词器(Visual Time Tokenizer)、解码器(Decoder)以及Refining Module组成:

图片

实验结果

为了更全面地评估模型的泛化能力,作者引入了重新缩放平均绝对误差(Rescale-MAE)和重新缩放均方误差(Rescale-MSE)这两个新的评估指标。这些指标通过在不同时间分辨率下重新缩放测试数据集来评估模型的性能,有效地避免了测试集泄露问题,同时也考察了模型在不同时间尺度下的适应能力。

在零样本学习任务中,ViTime展现出了令人瞩目的性能。与其他领先的模型如TimesFM(由Google Research提出的强大开源时间序列基础模型)相比,ViTime在大多数数据集和预测长度上都取得了显著优势。特别值得注意的是,在某些情况下,ViTime的零样本性能甚至超越了经过充分训练的监督学习模型。表明基于视觉智能的方法在处理时间序列数据时可能具有根本性的优势,能够捕捉到传统数值方法难以识别的模式和特征。

图片

此外作者还进行了一系列微调实验,对比了ViTime与其他最新的监督学习模型在不同数据比例下的性能。结果表面,只使用10%的领域特定数据进行微调,ViTime就能够在性能上超越使用100%数据训练的最新监督模型,如PatchTST、SiMBA和TIMESNET等。

图片

作者结论:基于视觉智能的时序模型可能是通往AGI的最佳选择。


大家可以关注我【科学最top】,第一时间follow时序高水平论文解读!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/918055.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java项目-jenkins任务的创建和执行

参考内容: jenkins的安装部署以及全局配置 1.编译任务的general 2.源码管理 3.构建里编译打包然后copy复制jar包到运行服务器的路径 clean install -DskipTests -Pdev 中的-Pdev这个参数用于激活 Maven 项目中的特定构建配置(Profile) 在 pom.xml 文件…

Qt按钮类-->day09

按钮基类 QAbstractButton 标题与图标 // 参数text的内容显示到按钮上 void QAbstractButton::setText(const QString &text); // 得到按钮上显示的文本内容, 函数的返回就是 QString QAbstractButton::text() const;// 得到按钮设置的图标 QIcon icon() const; // 给按钮…

论文6—《基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用》文献阅读分析报告

论文报告:基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用 基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用 摘要国内外研究现状1. 疏花技术研究2. 目标检测算法研究 研究目的研究问题使用的研究方法试验研究结果文献结论创新点和对现有研究的贡献1. Y…

「人眼视觉不再是视频消费的唯一形式」丨智能编解码和 AI 视频生成专场回顾@RTE2024

你是否想过,未来你看到的电影预告片、广告,甚至新闻报道,都可能完全由 AI 生成? 在人工智能迅猛发展的今天,视频技术正经历着一场前所未有的变革。从智能编解码到虚拟数字人,再到 AI 驱动的视频生成&#…

计算机毕业设计Python美食推荐系统 美团爬虫 美食可视化 机器学习 深度学习 混合神经网络推荐算法 Hadoop Spark 人工智能 大数据毕业设计

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

GPU分布式通信技术-PCle、NVLink、NVSwitch深度解析

GPU分布式通信技术-PCle、NVLink、NVSwitch 大模型时代已到来,成为AI核心驱动力。然而,训练大模型却面临巨大挑战:庞大的GPU资源需求和漫长的学习过程。 要实现跨多个 GPU 的模型训练,需要使用分布式通信和 NVLink。此外&#xf…

MySQL:联合查询(2)

首先写一个三个表的联合查询 查询所有同学的每门课成绩,及同学的个人信息 1.我们首先要确定使用哪些表 学生表,课程表,成绩表 2.取笛卡尔积 select * from score,student,course; 3. 确定表与表之间的联合条件 select * from score,stud…

【leetcode】704. 二分查找

注意一般mid left (right-left)/2; 不要用mid (right - left)/2 中间值的计算需要考虑到整型溢出的问题。 如果使用 mid (right - left) / 2 的方式计算中间值,那么在 right 和 left 的值接近极限值的情况下,可能会导致计算出的中间值发生整型溢出&…

RHCE的练习(12)

写一个脚本,完成以下要求: 给定一个用户: 如果其UID为0,就显示此为管理员;否则,就显示其为普通用户; #!/bin/bash ​ # 使用read命令获取用户名 read -p "请输入用户名: " username ​…

WPF-控件的属性值的类型转化

控件的属性值需要转成int、double进行运算的&#xff0c;可以使用一下方法 页面代码 <StackPanel Margin"4,0,0,0" Style"{StaticResource Form-StackPanel}"> <Label Content"替换后材料增加金额&#xff…

【从零开始的LeetCode-算法】3270. 求出数字答案

给你三个 正 整数 num1 &#xff0c;num2 和 num3 。 数字 num1 &#xff0c;num2 和 num3 的数字答案 key 是一个四位数&#xff0c;定义如下&#xff1a; 一开始&#xff0c;如果有数字 少于 四位数&#xff0c;给它补 前导 0 。答案 key 的第 i 个数位&#xff08;1 < …

iMetaOmics | 刘永鑫/陈同-用于食物微生物组成和时间序列研究的微生物组数据库FoodMicroDB...

点击蓝字 关注我们 FoodMicroDB&#xff1a;用于食物微生物组成和时间序列研究的微生物组数据库 iMeta主页&#xff1a;http://www.imeta.science 研究论文 ● 原文链接DOI: https://doi.org/10.1002/imo2.40 ● 2024年11月1日&#xff0c;中国农业科学院深圳农业基因组研究所刘…

视觉slam十四讲 ch8 光流法和直接法

之前的都是单层光流 转载至Blibli 视觉SLAM十四讲_7视觉里程计1_计算相机运动_哔哩哔哩_bilibili

QSS 设置bug

问题描述&#xff1a; 在QWidget上add 一个QLabel&#xff0c;但是死活不生效 原因&#xff1a; c 主程序如下&#xff1a; QWidget* LOGO new QWidget(logo_wnd);LOGO->setFixedSize(logo_width, 41);LOGO->setObjectName("TittltLogo");QVBoxLayout* tit…

Linux运维篇-iscsi存储搭建

目录 概念实验介绍环境准备存储端软件安装使用targetcli来管理iSCSI共享存储 客户端软件安装连接存储 概念 iSCSI是一种在Internet协议上&#xff0c;特别是以太网上进行数据块传输的标准&#xff0c;它是一种基于IP Storage理论的存储技术&#xff0c;该技术是将存储行业广泛…

WSL--无需安装虚拟机和docker可以直接在Windows操作系统上使用Linux操作系统

安装WSL命令 管理员打开PowerShell或Windows命令提示符&#xff0c;输入wsl --install&#xff0c;然后回车 注意&#xff1a;此命令将启用运行 WSL 和安装 Linux 的 Ubuntu 发行版所需的功能。 注意&#xff1a;默认安装最新的Ubuntu发行版。 注意&#xff1a;默认安装路径是…

【学习心得】算力云平台上的大模型部署并实现远程调用

以AutoDL算力云平台为例&#xff0c;部署国产开源ChatGLM3b模型。 一、准备工作 &#xff08;1&#xff09;准备一台算力服务器 首先&#xff0c;进入AutoDL官网的算力时长选择算力服务器资源。 创建好后会自动跳转控制台的“容器实例”界面&#xff0c;稍等片刻后选择“快捷…

Vue 中的透传,插槽,依赖注入

1. 透传attributes 在组件上使用透传attribute&#xff1a; 当你在父组件中使用子组件时&#xff0c;你可以添加一些attribute到子组件上&#xff0c;即使这些attribute没有在子组件的props中声明。 父组件&#xff1a; <!-- 父组件&#xff0c;例如 ParentComponent.vue…

97.【C语言】数据结构之栈

目录 栈 1.基本概念 2.提炼要点 3.概念选择题 4.栈的实现 栈初始化函数 入栈函数 出栈函数和栈顶函数 栈顶函数 栈销毁函数 栈 基本概念参见王爽老师的《汇编语言 第四版》第56和57页 节选一部分 1.基本概念 注意:这里提到的数据结构中的栈有别于操作系统的栈,后者是…

Spring-boot 后端java配置接口返回jsp页面

Spring-boot 后端java配置接口返回jsp页面 spring boot 基于spring MVC的基础上进行了改进&#xff0c; 将Controller 与ResponseBody 进行了合并成一个新的注解 RestController。 当用户请求时&#xff0c;需要有视图渲染的&#xff0c;与请求数据的请求分别使用 1.在appli…