文献解读-DNAscope: High accuracy small variant calling using machine learning

关键词:基准与方法研究;基因测序;变异检测;


文献简介

  • 标题(英文):DNAscope: High accuracy small variant calling using machine learning
  • 标题(中文):DNAscope:使用
    的机器学习高精度小变异调用
  • 发表期刊:bioRxiv
  • 作者单位:Sentieon公司
  • 发表年份:2022
  • 文章地址:https://doi.org/10.1101/2022.05.20.492556

图1 文献简介

图1 文献简介

当前的小变异检测技术,尤其是GATK的HaplotypeCaller,在大多数情况下表现优秀。然而,在复杂基因组区域的检测准确性仍有提升空间。随着测序技术在临床应用中的普及,提高这些区域的检测准确性变得越来越重要。传统方法主要依赖专家构建的模型和手动调整的过滤器,而机器学习方法显示出通过学习更复杂的变异特征关系来提高检测准确性的潜力。


测序流程

DNAscope作为GATK HaplotypeCaller的进阶版本,巧妙地融合了成熟的基于单倍型的变异检测方法和先进的机器学习技术,以提升变异检测的准确性。它在保留原有逻辑架构的同时,优化了活跃区域检测和局部组装过程,特别增强了在复杂基因组区域的表现。DNAscope通过为候选变异添加额外信息注释,并结合机器学习模型进行变异基因型分析,显著提高了整体准确度。此外,DNAscope还可与贝叶斯基因型分析模型配合使用,使其在非哺乳动物物种的重测序分析中同样发挥优势,体现了其广泛的适用性和卓越的性能。

图2  DNAscope方法概述

图2 DNAscope方法概述

为了评估 DNAscope 在不同个体中的变异调用准确性,研究者使用 Sentieon 的 DNAscope 和 DNAseq(符合 GATK 种系最佳实践)管道,使用来自三个 GIAB 样本的公开数据来调用变异:HG002、HG003 和 HG004。

测试涵盖了不同测序深度(15x至36x),并以NIST GIAB高置信度调用v4.2.1为基准。结果显示,DNAscope在所有样本和测序深度下的SNP和INDEL检测性能均优于DNAseq,特别是在30x HG002样本中,SNP和INDEL的F1分数分别达到99.57%和99.46%,总体错误率降低了一半以上。这种在多个样本中的卓越表现证明了DNAscope模型的泛化能力,而非过拟合于训练样本。此外,DNAscope还展现了适应新测序技术的潜力,如之前研究中开发的MGI模型所示,进一步凸显了其在变异检测领域的先进性和灵活性。

图3  DNAscope 和 DNAseq 的精确召回曲线

图3 DNAscope 和 DNAseq 的精确召回曲线

图4  对整个 GA4GH 分层区域进行评估,HG002 深度为 30×

图4 对整个 GA4GH 分层区域进行评估,HG002 深度为 30×

为深入评估变异检测工具的性能,研究组利用GA4GH的分层区域进行了详细分析。这些区域包括低可映射性、分段重复、自链区域、MHC以及综合多种复杂因素的"全难度"区域。结果显示,DNAscope在读数映射困难的区域,如低可映射性、分段重复和自链区域,均明显优于DNAseq。特别是在MHC区域的SNP检测和长同聚物区域的INDEL检测中,DNAscope表现更为出色。这些优势共同导致DNAscope在复杂基因组区域的整体表现优于DNAseq。值得注意的是,即使在相对简单的区域,DNAscope在INDEL检测方面仍保持领先,而在SNP检测方面与DNAseq旗鼓相当。这一全面的分层分析凸显了DNAscope在处理各种复杂基因组区域时的强大能力和灵活性。

研究团队通过对HG002、HG003和HG004的36x测序数据进行抽样,创建了5个不同深度的数据集,以评估变异检测工具在不同测序覆盖度下的性能。结果显示,尽管变异检测准确性通常随覆盖度降低而下降,但DNAscope在低覆盖度条件下仍然保持了优于DNAseq的高准确性。特别值得注意的是,DNAscope在20x覆盖度下的表现始终优于DNAseq在36x覆盖度下的表现。这一发现突显了DNAscope改进的架构和机器学习模型过滤在低覆盖度条件下的显著优势,为高效且经济的变异检测提供了新的可能性。

图5 对瓶中基因组样本 HG002、HG003、HG004 进行多深度测序评估

图5 对瓶中基因组样本 HG002、HG003、HG004 进行多深度测序评估

研究探讨了DNAscope贝叶斯模型在非人类和多倍体样本上的表现,特别关注15x覆盖度下的性能。结果显示,尽管整体准确性低于其机器学习模型,DNAscope的贝叶斯模型在INDEL检测方面仍优于DNAseq,而在SNP检测方面两者相当。这表明DNAscope在处理非标准样本时仍具有一定优势,尤其是在INDEL检测方面。

图6 对Genome in a Bottle样本HG002、HG003和HG004在15x测序深度下的评估

图6 对Genome in a Bottle样本HG002、HG003和HG004在15x测序深度下的评估

在标准化的AWS环境中,对DNAscope进行了性能测试。结果显示,使用96+vCPU处理30x全基因组测序样本时,DNAscope的运行时间不到1小时,与DNAseq相当,比BWA/GATK快5倍。测试还表明DNAscope具有良好的可扩展性,运行时间与线程数几乎呈线性关系。

图7 DNAscope 在多个 AWS C6i 实例上的运行时

图7 DNAscope 在多个 AWS C6i 实例上的运行时


总结

在这项研究中,研究组证明了DNAscope在不同样本和不同覆盖度水平下都能达到比DNAseq更高的准确性。使用GA4GH分层区域进行的分层分析,能够确认DNAscope在大多数分层区域中都具有高准确性,并突显了DNAscope在插入缺失(indels)和包含变异检测较困难的基因组区域的分层中具有更高的准确性。DNAscope结合了GATK's HaplotypeCaller中使用的成熟数学和统计模型,以及用于变异基因型分析的机器学习方法,在保持计算效率的同时实现了卓越的准确性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/917747.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

每日一博 - Java的Shallow Copy和Deep Copy

文章目录 概述创建对象的5种方式1. 通过new关键字2. 通过Class类的newInstance()方法3. 通过Constructor类的newInstance方法4. 利用Clone方法5. 反序列化 Clone方法基本类型和引用类型浅拷贝深拷贝如何实现深拷贝1. 让每个引用类型属性内部都重写clone()方法2. 利用序列化 概述…

【英特尔IA-32架构软件开发者开发手册第3卷:系统编程指南】2001年版翻译,2-25

文件下载与邀请翻译者 学习英特尔开发手册,最好手里这个手册文件。原版是PDF文件。点击下方链接了解下载方法。 讲解下载英特尔开发手册的文章 翻译英特尔开发手册,会是一件耗时费力的工作。如果有愿意和我一起来做这件事的,那么&#xff…

Odoo :一款免费开源的日化行业ERP管理系统

文 / 开源智造Odoo亚太金牌服务 概述 构建以 IPD 体系作为核心的产品创新研发管控体系,增进企业跨部门业务协同的效率,支撑研发管控、智慧供应链、智能制造以及全渠道营销等行业的场景化,构筑行业的研产供销财一体化管理平台。 行业的最新…

【Golang】——Gin 框架中间件详解:从基础到实战

中间件是 Web 应用开发中常见的功能模块,Gin 框架支持自定义和使用内置的中间件,让你在请求到达路由处理函数前进行一系列预处理操作。这篇博客将涵盖中间件的概念、内置中间件的用法、如何编写自定义中间件,以及在实际应用中的一些最佳实践。…

计算机网络 (3)计算机网络的性能

一、计算机网络性能指标 速率: 速率是计算机网络中最重要的性能指标之一,它指的是数据的传送速率,也称为数据率(Data Rate)或比特率(Bit Rate)。速率的单位是比特/秒(bit/s&#xff…

云原生之运维监控实践-使用Telegraf、Prometheus与Grafana实现对InfluxDB服务的监测

背景 如果你要为应用程序构建规范或用户故事,那么务必先把应用程序每个组件的监控指标考虑进来,千万不要等到项目结束或部署之前再做这件事情。——《Prometheus监控实战》 去年写了一篇在Docker环境下部署若依微服务ruoyi-cloud项目的文章,当…

【C++】类中的“默认成员函数“--构造函数出现的意义?拷贝构造时“无穷递归”和“双重释放”出现的原因?

目录 "默认"成员函数 概念引入: 一、构造函数 问题引入: 1)构造函数的概念 2)构造函数实例 3)构造函数的特性 4)关于默认生成的构造函数 (默认构造函数) 默认构造函数未完成初始化工作实例: 二…

fastapi 调用ollama之下的sqlcoder模式进行对话操作数据库

from fastapi import FastAPI, HTTPException, Request from pydantic import BaseModel import ollama import mysql.connector from mysql.connector.cursor import MySQLCursor import jsonapp FastAPI()# 数据库连接配置 DB_CONFIG {"database": "web&quo…

基于微信小程序的乡村研学游平台设计与实现,LW+源码+讲解

摘 要 信息数据从传统到当代,是一直在变革当中,突如其来的互联网让传统的信息管理看到了革命性的曙光,因为传统信息管理从时效性,还是安全性,还是可操作性等各个方面来讲,遇到了互联网时代才发现能补上自…

基于Java Springboot城市交通管理系统

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 数…

手机直连卫星NTN通信初步研究

目录 1、手机直连卫星之序幕 2、卫星NTN及其网络架构 2.1 NTN 2.2 NTN网络架构 3、NTN的3GPP标准化进程 3.1 NTN需要适应的特性 3.2 NTN频段 3.3 NTN的3GPP标准化进程概况 3.4 NTN的3GPP标准化进程的详情 3.4.1 NR-NTN 3.4.1.1 NTN 的无线相关 SI/WI 3.4.1.2…

基本数据类型和包装类型的区别、缓存池、自动拆箱装箱(面试题)

目录 1. 八种基本类型及对应包装类型 2. 基本类型和包装类型 区别 3. 自动拆箱装箱 3.1 自动装箱 3.2 自动拆箱 3.3 缓存池 4. 高频面试案例分析 1. 八种基本类型及对应包装类型 基本数据类型类型描述范围(指数形式)位数包装类型byte整型&#x…

Aria2-CVE-2023-39141漏洞分析

前言: 在偶然一次的渗透靶机的时候,上网查询Aria2的历史漏洞,发现了这个漏洞,但是网上并没有对应的漏洞解释,于是我就就源代码进行分析,发现这是一个非常简单的漏洞,于是发这篇文章跟大家分享一…

androidstudio入门到放弃配置

b站视频讲解传送门 android_studio安装包:https://developer.android.google.cn/studio?hlzh-cn 下载安装 开始创建hello-world 1.删除缓存 文件 下载gradle文件压缩:gradle-8.9用自己创建项目时自动生成的版本即可,不用和我一样 https://…

河道无人机雷达测流监测系统由哪几部分组成?

在现代水利管理中,河道无人机雷达监测系统正逐渐成为一种重要的工具,为河道的安全和管理提供了强大的技术支持。那么,这个先进的监测系统究竟由哪几部分组成呢? 河道无人机雷达监测系统工作原理 雷达传感器通过发射电磁波或激光束…

Mac上详细配置java开发环境和软件(更新中)

文章目录 概要JDK的配置JDK下载安装配置JDK环境变量文件 Idea的安装Mysql安装和配置Navicat Premium16.1安装安装Vscode安装和配置Maven配置本地仓库配置阿里云私服Idea集成Maven 概要 这里使用的是M3型片 14.6版本的Mac 用到的资源放在网盘 链接: https://pan.baidu.com/s/17…

CKA认证 | Day3 K8s管理应用生命周期(上)

第四章 应用程序生命周期管理(上) 1、在Kubernetes中部署应用流程 1.1 使用Deployment部署Java应用 在 Kubernetes 中,Deployment 是一种控制器,用于管理 Pod 的部署和更新。以下是使用 Deployment 部署 Java 应用的步骤&#x…

ffmpeg编程入门

文章目录 ffmpeg流程常用的音视频术语常用概念复用器编解码器ffmpeg的整体结构注册组件相关封装格式相关函数的调用流程 相关的ffpmeg数据结构简介数据结构之间的关系 ffmpeg流程 图中的函数 以及结构体都是ffmpeg自带提供的 ffmpeg打开的时候 和其他io操作差不多 有一个类似句…

函数指针示例

目录&#xff1a; 代码&#xff1a; main.c #include <stdio.h> #include <stdlib.h>int Max(int x, int y); int Min(int x, int y);int main(int argc, char**argv) {int x,y;scanf("%d",&x);scanf("%d",&y);int select;printf(&q…

间接采购管理:主要挑战与实战策略

间接采购支出会悄然消耗掉企业的现金流&#xff0c;即使是管理完善的公司也难以避免。这是因为间接支出不直接关联特定客户、产品或项目&#xff0c;使采购人员难以跟踪。但正确管理间接支出能为企业带来显著收益——前提是要有合适的工具。本文将分享管理间接支出的关键信息与…