【C++ 学习 ⑰】- 继承(下)

目录

一、派生类的默认成员函数

二、继承与友元

三、继承与静态成员

四、复杂的菱形继承及菱形虚拟继承

五、继承和组合


 

 


一、派生类的默认成员函数

  1. 派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认构造函数,那么必须在派生类的构造函数的初始化列表中显示调用基类的构造函数。

  2. 派生类的拷贝构造函数必须调用基类的拷贝构造函数完成基类的那一部分成员的拷贝初始化。

  3. 派生类的 operator= 必须调用基类的 operator= 完成基类的那一部分成员的赋值。

  4. 派生类的析构函数在被调用完后,会自动调用基类的析构函数清理基类的那一部分成员,即在派生类的析构函数中不用显示地调用基类的析构函数。

  5. 在创建派生类对象时,先调用基类的构造函数,再调用派生类的构造函数。

  6. 在销毁派生类对象时,先调用派生类的析构函数,再调用基类的析构函数。

#include <iostream>
using namespace std;
​
class Person
{
public:
    Person(const char* name = "张三", int age = 18)
        : _name(name), _age(age)
    {
        cout << "Person::default constructor" << endl;
    }
​
    Person(const Person& p)
        : _name(p._name), _age(p._age)
    {
        cout << "Person(const Person& p)" << endl;
    }
​
    Person& operator=(const Person& p)
    {
        cout << "Person& operator=(const Person p)" << endl;
        if (this != &p)
        {
            _name = p._name;
            _age = p._age;
        }
        return *this;
    }
​
    ~Person()
    {
        cout << "~Person()" << endl;
    }
protected:
    string _name;  // 姓名
    int _age;  // 年龄
};
​
class Student : public Person
{
public:
    Student(const char* name = "张三", int age = 18, int stu_id = 0)
        : Person(name, age), _stu_id(stu_id)
    {
        cout << "Student::default constructor" << endl;
    }
​
    Student(const Student& s)
        : Person(s), _stu_id(s._stu_id)
    {
        cout << "Student(const Student& s)" << endl;
    }
​
    Student& operator=(const Student& s)
    {
        cout << "Student& operator=(const Student& s)" << endl;
        if (this != &s)
        {
            Person::operator=(s);  // operator=(s); 会陷入死循环
            _stu_id = s._stu_id;
        }
        return *this;
    }
​
    ~Student()
    {
        cout << "~Student()" << endl;
    }
protected:
    int _stu_id;  // 学号
};
​
int main()
{
    Student s1("李四", 20, 1);
    // Person::default constructor
    // Student::default constructor
​
    Student s2(s1);
    // Person(const Person& p)
    // Student(const Student & s)
​
    Student s3;
    // Person::default constructor
    // Student::default constructor
​
    s3 = s1;
    // Student& operator=(const Student& s)
    // Person& operator=(const Person p)
​
    // ~Student()
    // ~Person()
    // ~Student()
    // ~Person()
    // ~Student()
    // ~Person()
    return 0;
}

 

 


二、继承与友元

友元关系不能继承,即基类友元不能访问子类私有和保护成员

#include <iostream>
using namespace std;
​
class Student;
class Person
{
    friend void Print(const Person& p, const Student& s);
protected:
    string _name = "张三";
    int _age = 18;
};
​
class Student : public Person
{
    // 必须声明,否则会报错
    friend void Print(const Person& p, const Student& s);  
protected:
    int _stu_id = 0;
};
​
void Print(const Person& p, const Student& s)
{
    cout << p._name << " " << p._age << endl;
    cout << s._stu_id << endl;
}
​
int main()
{
    Person p;
    Student s;
    Print(p, s);
    return 0;
}

 

 


三、继承与静态成员

如果基类定义了 static 静态成员,无论派生出了多少个类,在整个继承体系中都只有一个 static 静态成员实例

#include <iostream>
using namespace std;
​
class Person
{
public:
    Person() { ++_count; }
protected:
    string _name;
    int _age;
public:
    static int _count;  // static 静态成员变量
};
​
int Person::_count = 0;
​
class Student : public Person
{
protected:
    int _stu_id;
};
​
class Graduate : public Student
{
protected:
    string _seminarCourse;  // 研究科目
};
​
int main()
{
    cout << &Person::_count << " " << &Student::_count
        << " " << &Graduate::_count << endl;
    // 输出的三个地址相同
    Person p1;
    Student s1;
    Student s2;
    Graduate g1;
    Graduate g2;
    Graduate g3;
    cout << Person::_count << endl;  
    // 6
    return 0;
}

 

 


四、复杂的菱形继承及菱形虚拟继承

单继承:一个派生类只有一个直接基类时,称这种继承关系为单继承。

多继承:一个派生类有两个或两个以上直接基类时,称这种继承关系为多继承。

菱形继承是多继承的一种特殊情况,它会造成数据冗余和二义性的问题,例如

#include <iostream>
using namespace std;
​
// 间接基类 A
class A
{
public:
    int _a;
};
​
// 直接基类 B
class B : public A
{
public:
    int _b;
};
​
// 直接基类 C
class C : public A
{
public:
    int _c;
};
​
// 派生类 D
class D : public B, public C
{
public:
    int _d;
};
​
int main()
{
    D d;
    // 为了消除歧义,必须在 _a 前面指明它具体来自哪个类
    d.B::_a = 0;
    d.C::_a = 1;
    d._b = 2;
    d._c = 3;
    d._d = 4;
    return 0;
}

f0745668420b4395a7ba770acb62a36c.png

 

为了解决菱形继承中的问题,C++ 提出了虚继承,使得在派生类中只保留一份间接基类的成员

在继承方式前面加上 virtual 关键字就是虚继承,例如

#include <iostream>
using namespace std;
​
// 间接基类 A
class A
{
public:
    int _a;
};
​
// 直接基类 B
class B : virtual public A  // 虚继承
{
public:
    int _b;
};
​
// 直接基类 C
class C : virtual public A  // 虚继承
{
public:
    int _c;
};
​
// 派生类 D
class D : public B, public C
{
public:
    int _d;
};
​
int main()
{
    D d;
    d._a = 1;  // ok
    d._b = 2;
    d._c = 3;
    d._d = 4;
    return 0;
}

5d814df4b34a4815b1592c104b9111da.png

 

虚继承底层实现原理与编译器相关,一般是通过虚基类指针和虚基类表实现的

每个虚继承的子类都有一个虚基类指针,该指针指向一个虚基类表,表中记录了虚基类和本类的偏移量,通过这个偏移量就可以找到虚基类成员

当虚继承的子类被当作父类继承时,虚基类指针也会被继承

 

 


五、继承和组合

面向对象系统中功能复用的两种最常用技术是类继承对象组合(object composition)

类继承允许你根据基类的实现定义派生类的实现,这种通过生成派生类的复用通常被称为白箱复用(white-box reuse)。术语 "白箱" 是相对可视性而言的:在继承方式中,基类的内部细节对派生类可见。继承一定程度上破坏了基类的封装,基类的改变,对派生类有很大的影响。派生类和基类的依赖关系很强,耦合度高

对象组合是类继承之外的另一种复用选择,新的更复杂的功能可以通过组装或组合对象来获得。对象组合要求被组合的对象具有良好定义的接口。这种复用风格被称为黑箱复用(white-box reuse),因为对象的内部细节是不可见的,对象只能以 "黑箱" 的形式出现。组合类之间没有很强的依赖关系,耦合度低

因此在实际中,尽量多使用组合。不过继承也有用武之地的:public 继承是一种 is-a 的关系,即每个派生类对象都是一个基类对象,组合是一种 has-a 的关系,即假设 B 组合了 A,那么每个 B 类对象都有一个 A 类对象,而有些关系就适合用继承;另外要实现多态,也必须要用继承

例一

class Car
{
protected:
    string _color;  // 颜色
    string _num;  // 车牌号
};
​
class AITO : public Car
{
public:
    void Describe() const { cout << "Intelligent" << endl; }
};
​
class AVATR : public Car
{
public:
    void Describe() const { cout << "luxurious" << endl; }
};

AITO、AVATR 和 Car 构成 is-a 的关系

例二

class Tire
{
protected:
    string _brand;  // 品牌
    size_t _size;  // 尺寸
};
​
class Car
{
protected:
    string _color;
    string _num;
    Tire _t;
};

Car 和 Tire 构成 has-a 的关系

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/91744.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python基础学习第一天:关于Python的简单介绍

前言 最近一批批大一新生都要开始踏入校园了&#xff0c;计算机专业 emmm…如果有需要学习python的&#xff0c;尤其是还没开学的&#xff0c;确实可以开始找找资料看看python了&#xff0c;如果是自己本来就对python感兴趣&#xff0c;更应该需要看看了&#xff0c;毕竟学校到…

阿里云 Serverless 应用引擎 2.0,正式公测!

阿里云 Serverless 应用引擎 SAE2.0 正式公测上线&#xff01;全面升级后的 SAE2.0 具备极简体验、标准开放、极致弹性三大优势&#xff0c;应用冷启动全面提效&#xff0c;秒级完成创建发布应用&#xff0c;应用成本下降 40% 以上。 此外&#xff0c;阿里云还带来容器服务 Se…

无涯教程-聚类算法 - Mean-Shift

如前所述&#xff0c;它是在无监督学习中使用的另一种强大的聚类算法&#xff0c;与K均值聚类不同&#xff0c;它不做任何假设&#xff0c;因此&#xff0c;它是一种非参数算法。 均值平移算法基本上是通过将数据点移向最高密度的数据点(即群集质心)来迭代地将数据点分配给群集…

【日常积累】Linux中vi/vim的使用

概述 vim是由vi发展演变过来的文本编辑器&#xff0c;因其具有语法高亮显示、多视窗编辑、代码折叠、支持插件等功能&#xff0c;由于其功能相比vi来说更加强大&#xff0c;所以在实际工作中的使用更加广泛。 vim工作模式 Vim具有多种工作模式&#xff0c;常用的工作模式有&…

去除wps段落柄,删除空白页

如图&#xff0c;有一个段落柄在左端&#xff0c;无法删除&#xff0c;只能编辑。 导致本来是8页内容&#xff0c;现在是9页&#xff0c;多了一空白页 后面新建一个空白页&#xff0c;发现默认会自带一个段落柄&#xff0c;所以有可能这个段落柄是不能消除的&#xff0c;那么如…

【LeetCode-面试经典150题-day15】

目录 104.二叉树的最大深度 100.相同的树 226.翻转二叉树 101.对称二叉树 105.从前序与中序遍历序列构造二叉树 106.从中序与后序遍历序列构造二叉树 117.填充每个节点的下一个右侧节点指针Ⅱ 104.二叉树的最大深度 题意&#xff1a; 给定一个二叉树 root &#xff0c;返回其…

智能井盖传感器,物联网智能井盖系统

随着城市人口的不断增加和城市化进程的不断推进&#xff0c;城市基础设施的安全和可靠性变得愈发重要&#xff0c;城市窨井盖作为城市基础设施重要组成部分之一&#xff0c;其安全性事关城市安全有序运行和居民生产生活安全保障。 近年来&#xff0c;各地都在加强城市窨井盖治理…

【C/C++】多态的概念 | 虚函数 | 虚函数指针

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…

STM32 BOOT 启动配置 ISP升级 介绍

启动配置 在STM32F10xxx里&#xff0c;可以通过BOOT[1:0]引脚选择三种不同启动模式。 启动模式选择引脚启动模式说明BOOT1BOOT0X0主闪存存储器主闪存存储器被选为启动区域01系统存储器系统存储器被选为启动区域11内置SRAM内置SRAM被选为启动区域 在系统复位后&#xff0c; S…

Kafka核心原理第一弹——更新中

架构原理 一、高性能读写架构原理——顺序写零拷贝 首先了解两个专业术语&#xff0c;研究kafka这个东西&#xff0c;你必须得搞清楚这两个概念&#xff0c;吞吐量&#xff0c;延迟。 写数据请求发送给kafka一直到他处理成功&#xff0c;你认为写请求成功&#xff0c;假设是…

WOFOST模型与PCSE模型应用

目录 第一章 理论基础 农作物生长模型概述 第二章 数据准备 第三章 WOFOST模型基础 第四章 PythonCropSimulationEnvironment 第五章 案例拓展 更多应用 实现作物产量的准确估算对于农田生态系统响应全球变化、可持续发展、科学粮食政策制定、粮食安全维护都至关重要。传…

怎么把pdf转换成jpg格式?

怎么把pdf转换成jpg格式&#xff1f;在我们日常的办公过程中&#xff0c;PDF文件是一个经常被使用来传输文件的格式。它能够确保我们的文件内容不会混乱&#xff0c;并以更加完美的方式呈现出来。然而&#xff0c;PDF文件也存在一些缺陷。例如&#xff0c;它无法直接编辑&#…

linux和python轻松实现短信和邮件的秒发!四大实战脚本大揭秘!

引言 作为Linux和Python技术持续学习者&#xff0c;我们不仅要了解基础知识&#xff0c;还需要实际运用技术解决问题。本文将分享四个实用的Python和Linux运维脚本&#xff0c;帮助我们轻松实现短信和邮件的秒发功能。 要求环境 一台运行Linux操作系统的服务器&#xff08;可以…

SQL Server软件安装包分享(附安装教程)

目录 一、软件简介 二、软件下载 一、软件简介 SQL Server是一种关系型数据库管理系统&#xff0c;由美国微软公司开发。它被设计用于存储、管理和查询数据&#xff0c;被广泛应用于企业级应用、数据仓库和电子商务等场景。 以下是SQL Server软件的主要特点和功能&#xff1…

面试题-React(六):React组件和生命周期

一、React组件 React组件简介&#xff1a; React组件是构建用户界面的基本单元。它们将界面拆分成独立、可重用的部分&#xff0c;使得代码更加模块化、可维护性更高。React组件可以是函数组件或类组件&#xff0c;它们接收输入的数据&#xff08;称为props&#xff09;并返回…

Dockerfile制作LAMP环境镜像

文章目录 使用Dockerfile制作LAMP环境镜像编写Dockerfile不修改默认页面修改默认页面 Start Script目录结构及文件登录私有仓库给镜像打标签上传镜像页面检查检测镜像可用性 使用Dockerfile制作LAMP环境镜像 编写Dockerfile 不修改默认页面 FROM centos:7 MAINTAINER "…

数据结构--递归与分治

汉诺塔分析&#xff1a; 以三层进行分析&#xff0c;大于三层分析情况是一样的。 #include <stdio.h>void move(int n,char x,char y,char z) {if(1 n){printf("%c---------->%c\n",x,z);}else{move(n-1,x,z,y);//将第n-1个盘子从x借助z移动到y printf(&q…

nmon的安装与使用

一、Linux服务器配置信息 操作系统&#xff1a;CentOS 7.6 64位&#xff08;可用命令&#xff1a;cat /etc/redhat-release和uname -a查看&#xff09; CPU&#xff1a;1核&#xff08;可用命令top查看&#xff09; 内存&#xff1a;2GB&#xff08;可用命令free查看&#xff…

修改Jupyter Notebook默认打开路径

这里我是重新下载的anaconda&#xff0c;打开Jupyter之后是默认在C盘的一个路径的&#xff0c;现在我们就来修改一下它的一个默认打开路径&#xff0c;这样在我们后续学习过程中&#xff0c;可以将ipynb后缀的文件放在这个目录下就能查看了。 1、先打开Anaconda Prompt&#x…

【大模型】基于 LlaMA2 的高 star 的 GitHub 开源项目汇总

【大模型】基于 LlaMA2 的高 star 的 GitHub 开源项目汇总 Llama2 简介开源项目汇总NO1. FlagAlpha/Llama2-ChineseNO2. hiyouga/LLaMA-Efficient-TuningNO3. yangjianxin1/FireflyNO4. LinkSoul-AI/Chinese-Llama-2-7bNO5. wenge-research/YaYiNO6. michael-wzhu/Chinese-LlaM…