对称加密与非对称加密:密码学的基石及 RSA 算法详解

对称加密与非对称加密:密码学的基石及 RSA 算法详解

在当今数字化的时代,信息安全至关重要。对称加密和非对称加密作为密码学中的两种基本加密技术,为我们的数据安全提供了强大的保障。本文将深入探讨对称加密和非对称加密的特点、应用场景,以及详细介绍非对称加密算法中的 RSA 算法及其在 Java 中的实现和其他方面的应用。

一、对称加密与非对称加密概述

(一)对称加密
  1. 特点
    • 高效性:使用相同的密钥进行加密和解密,速度较快,适用于加密大量数据。
    • 密钥管理挑战:密钥的安全分发是一个主要问题。如果密钥被第三方截获,加密信息可能被破解,因此密钥的安全传递和保护至关重要。
  2. 常见算法:DES、AES、RC4、Blowfish 等。
  3. 应用场景:适用于加密存储在硬盘上的文件、数据库加密等需要高速加密大量数据的场景。
    在这里插入图片描述
(二)非对称加密
  1. 特点
    • 安全性高:使用一对密钥,公钥公开用于加密信息,私钥保密用于解密信息。私钥不需要在网络上传输,减少了被截获的风险。
    • 计算开销大、速度慢:相比于对称加密,非对称加密的计算开销较大,速度较慢,通常不用于大量数据的直接加密。
    • 简化密钥管理:公钥可以公开,私钥保持秘密,解决了对称加密中密钥分发的难题。
  2. 常见算法:RSA、DSA、ECC 等。
  3. 应用场景:适用于需要安全通信但难以安全地分发密钥的场景,如 HTTPS 通信、数字签名、加密电子邮件等。
    在这里插入图片描述

二、RSA 非对称加密算法详解

(一)RSA 算法的起源

RSA 是非对称加密算法的一种,它的名字来源于三位发明者的名字首字母 ——Ron Rivest、Adi Shamir 和 Leonard Adleman。

(二)RSA 算法的安全性原理

RSA 算法的安全性基于大整数分解问题的难度。对于两个大素数的乘积,分解它们回到原来的素数是非常困难的,尤其是在没有足够计算资源的情况下。

下面是使用Markdown语法对RSA算法的详细解释:

密钥生成:

选择两个大的随机素数( p )和( q )。
计算它们的乘积( n = pq ),( n )的长度通常在1024到4096比特之间。
计算欧拉函数( \phi(n) = (p-1)(q-1) )。
选择一个整数( e ),满足( 1 < e < \phi(n) )并且( e )和( \phi(n) )互质。
计算( d ),使得( ed \equiv 1 \pmod{\phi(n)} )。换句话说,找到( d )使得( ed - 1 )是( \phi(n) )的倍数。
公钥是( (n, e) ),私钥是( (n, d) )。

加密过程:

假设要加密的消息( m )是一个小于( n )的整数。
使用公钥( (n, e) )加密消息( m )得到密文( c ):( c = m^e \mod n )。

解密过程:

使用私钥( (n, d) )解密密文( c )得到原始消息( m ):( m = c^d \mod n )。
RSA算法之所以有效,是因为( m^{ed} \equiv m \pmod{n} )。这是因为( ed \equiv 1 \pmod{\phi(n)} ),所以( m^{ed} )实际上等于( m )加上( \phi(n) )的倍数,这确保了在模( n )意义下,( m^{ed} )和( m )是相同的。

RSA的安全性依赖于大整数分解问题的难度,即给定( n ),很难找到( p )和( q )。然而,随着量子计算机的发展,使用Shor’s算法可以在多项式时间内解决大整数分解问题,从而威胁到RSA的安全性。因此,对于未来的安全考虑,正在研究和采用后量子加密算法。

需要注意的是,实际应用中,RSA通常不会直接用于大量数据的加密,因为其加密速度较慢。相反,它常被用于加密对称密钥,然后使用对称密钥加密大量数据,这种方法称为混合加密。

(三)RSA算法的使用:

在Java中,RSA非对称加密算法可以通过Java Cryptography Extension (JCE) API来实现。JCE提供了加密、解密、签名以及验证签名的功能。以下是在Java中使用RSA的基本步骤和示例代码:

步骤1: 生成密钥对
首先,你需要生成一个RSA密钥对,包括公钥和私钥。这通常通过KeyPairGenerator类完成。

import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;

public class RSADemo {
    public static void main(String[] args) {
        try {
            KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");
            keyGen.initialize(2048); // 设置密钥长度,例如2048位
            KeyPair keyPair = keyGen.generateKeyPair();
            
            // 获取公钥和私钥
            java.security.PublicKey publicKey = keyPair.getPublic();
            java.security.PrivateKey privateKey = keyPair.getPrivate();
        } catch (NoSuchAlgorithmException e) {
            e.printStackTrace();
        }
    }
}

步骤2: 加密数据

使用公钥加密数据,这通常通过Cipher类完成。

import javax.crypto.Cipher;
import java.security.NoSuchPaddingException;
import java.security.InvalidKeyException;
import java.security.PublicKey;

public class RSADemo {
    // 假设你已经有了publicKey和privateKey
    private static PublicKey publicKey;
    private static java.security.PrivateKey privateKey;

    public static byte[] encryptData(byte[] data, PublicKey publicKey) {
        try {
            Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
            cipher.init(Cipher.ENCRYPT_MODE, publicKey);
            return cipher.doFinal(data);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }
}

步骤3: 解密数据

使用私钥解密数据,同样使用Cipher类。

public class RSADemo2 {
    // 假设你已经有了publicKey和privateKey
    private static PublicKey publicKey;
    private static java.security.PrivateKey privateKey;

    public static byte[] decryptData(byte[] encryptedData, java.security.PrivateKey privateKey) {
        try {
            Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
            cipher.init(Cipher.DECRYPT_MODE, privateKey);
            return cipher.doFinal(encryptedData);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }
}

注意事项

  1. RSA 加密的数据大小有限制,一般不超过密钥长度减去一些开销。
  2. 在实际应用中,RSA 通常用于加密对称密钥而不是直接加密大量数据,后者通过更高效的对称加密算法如 AES 完成。
  3. 为了提高安全性,建议使用更长的密钥长度,比如 4096 位。

四、RSA 算法的其他应用

(一)数字签名

RSA 可以用于创建数字签名,通过私钥加密一小段数据(通常是消息摘要)来实现。任何人都可以使用与私钥相对应的公钥来验证签名的真实性,确保了数据的完整性和来源的认证。

(二)安全通信

在通信双方之间建立安全通道,例如在 TLS/SSL 协议中,公钥可以用来加密对称密钥,然后这个对称密钥用于加密会话中的数据,结合了非对称和对称加密的优点。

(三)密钥交换

用于安全地交换对称加密密钥。例如,在 Diffie-Hellman 密钥交换中,可以使用 RSA 作为额外的安全层来保护密钥。

(四)身份验证

在 SSH 协议中,客户端使用其私钥证明其身份给服务器端,而服务器使用存储的公钥来验证签名。

(五)软件分发

软件开发商可以使用 RSA 签名来签署其软件,用户可以确认软件的来源和完整性,防止恶意篡改。

(六)证书管理

在 PKI(公钥基础设施)中,RSA 用于创建和验证数字证书,这些证书包含公钥,并由信任的第三方(证书颁发机构)签名,以保证公钥属于特定实体。

(七)安全存储

用于加密存储在硬盘、USB 驱动器或其他存储介质上的敏感数据,确保即使物理介质被盗也无法访问数据。

(八)法律和合规性

在某些行业和法规中,RSA 签名可以用于确保合同和其他法律文件的电子版本具有法律效力。

(九)区块链和加密货币

在区块链技术中,RSA 或类似的非对称加密技术用于创建和验证交易签名,确保交易的有效性和不可篡改性。

(十)云服务安全

在云环境中,RSA 可以用于保护客户数据的隐私,确保只有授权用户才能访问加密数据。

由于 RSA 算法的计算成本较高,它通常用于加密较小的数据量,如密钥、签名或简短的信息,而对于大量数据则使用对称加密算法,同时使用 RSA 加密对称密钥。

技术中,RSA 或类似的非对称加密技术用于创建和验证交易签名,确保交易的有效性和不可篡改性。

(十)云服务安全

在云环境中,RSA 可以用于保护客户数据的隐私,确保只有授权用户才能访问加密数据。

由于 RSA 算法的计算成本较高,它通常用于加密较小的数据量,如密钥、签名或简短的信息,而对于大量数据则使用对称加密算法,同时使用 RSA 加密对称密钥。

总之,对称加密和非对称加密在信息安全领域都有着重要的地位,而 RSA 非对称加密算法作为其中的代表,在多个方面发挥着关键作用。了解和正确应用这些加密技术,对于保护我们的数字资产和信息安全至关重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/917347.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

用go语言后端开发速查

文章目录 一、发送请求和接收请求示例1.1 发送请求1.2 接收请求 二、发送form-data格式的数据示例 用go语言发送请求和接收请求的快速参考 一、发送请求和接收请求示例 1.1 发送请求 package mainimport ("bytes""encoding/json""fmt""ne…

微服务day09

DSL查询 快速入门 GET /items/_search {"query": {"match_all": {}} } 叶子查询 GET /items/_search {"query": {"match_all": {}} }GET /items/_search {"query": {"multi_match": {"query": "脱…

鸿蒙NEXT应用示例:切换图片动画

【引言】 在鸿蒙NEXT应用开发中&#xff0c;实现图片切换动画是一项常见的需求。本文将介绍如何使用鸿蒙应用框架中的组件和动画功能&#xff0c;实现不同类型的图片切换动画效果。 【环境准备】 电脑系统&#xff1a;windows 10 开发工具&#xff1a;DevEco Studio NEXT B…

(02)ES6教程——Map、Set、Reflect、Proxy、字符串、数值、对象、数组、函数

目录 前言 一、Map Maps 和 Objects 的区别 Map的迭代 forEach() Map对象的操作 二、Set Set 中的特殊值 三、Reflect 四、Proxy 五、字符串 六、数值 七、对象 八、数组 九、函数 参考文献 前言 一、Map Map 对象保存键值对。任何值(对象或者原始值) 都可以…

【动手学电机驱动】 STM32-FOC(7)MCSDK Pilot 上位机控制与调试

STM32-FOC&#xff08;1&#xff09;STM32 电机控制的软件开发环境 STM32-FOC&#xff08;2&#xff09;STM32 导入和创建项目 STM32-FOC&#xff08;3&#xff09;STM32 三路互补 PWM 输出 STM32-FOC&#xff08;4&#xff09;IHM03 电机控制套件介绍 STM32-FOC&#xff08;5&…

Flume1.9.0自定义Sink组件将数据发送至Mysql

需求 1、将Flume采集到的日志数据也同步保存到MySQL中一份&#xff0c;但是Flume目前不支持直接向MySQL中写数据&#xff0c;所以需要用到自定义Sink&#xff0c;自定义一个MysqlSink。 2、日志数据默认在Linux本地的/data/log/user.log日志文件中&#xff0c;使用Flume采集到…

Transformer学习笔记(一)

Transformer学习笔记 基于 3B1B 可视化视频 自注意力机制 1.每个词的初始嵌入是一个高维向量&#xff0c;只编码该单词含义&#xff0c;与上下文没有关联 2.对初始向量进行位置编码&#xff0c;在高维向量中编码进位置信息&#xff08;单词在语言序列中的位置信息&#xff…

.netcore + postgis 保存地图围栏数据

一、数据库字段 字段类型选择(Type) 设置对象类型为&#xff1a;geometry 二、前端传递的Json格式转换 前端传递围栏的各个坐标点数据如下&#xff1a; {"AreaRange": [{"lat": 30.123456,"lng": 120.123456},{"lat": 30.123456…

【ArcGIS微课1000例】0127:计算城市之间的距离

本文讲述,在ArcGIS中,计算城市(以地级城市为例)之间的距离,效果如下图所示: 一、数据准备 加载配套实验数据包中的地级市和行政区划矢量数据(订阅专栏后,从私信查收数据),如下图所示: 二、计算距离 1. 计算邻近表 ArcGIS提供了计算点和另外点之间距离的工具:分析…

【数据库系列】 Spring Boot 集成 Neo4j 的详细介绍

Spring Boot 提供了对 Neo4j 的良好支持&#xff0c;使得开发者可以更方便地使用图数据库。通过使用 Spring Data Neo4j&#xff0c;开发者可以轻松地进行数据访问、操作以及管理。本文将详细介绍如何在 Spring Boot 应用中集成 Neo4j&#xff0c;包括基本配置、实体定义、数据…

【MySQL】ubantu 系统 MySQL的安装与免密码登录的配置

&#x1f351;个人主页&#xff1a;Jupiter. &#x1f680; 所属专栏&#xff1a;MySQL初阶探索&#xff1a;构建数据库基础 欢迎大家点赞收藏评论&#x1f60a; 目录 &#x1f4da;mysql的安装&#x1f4d5;MySQL的登录&#x1f30f;MySQL配置免密码登录 &#x1f4da;mysql的…

麒麟V10,arm64,离线安装docker和docker-compose

文章目录 一、下载1.1 docker1.2 docker-compose1.3 docker.service 二、安装三、验证安装成功3.1 docker3.2 docker-compose 需要在离线环境的系统了里面安装docker。目前国产化主推的是麒麟os和鲲鹏的cpu&#xff0c;这块的教程还比较少&#xff0c;记录一下。 # cat /etc/ky…

Docker:查看镜像里的文件

目录 背景步骤1、下载所需要的docker镜像2、创建并运行临时容器3、停止并删除临时容器 背景 在开发过程中&#xff0c;为了更好的理解和开发程序&#xff0c;有时需要确认镜像里的文件是否符合预期&#xff0c;这时就需要查看镜像内容 步骤 1、下载所需要的docker镜像 可以使…

C语言和C++的常量概念与区别分析

文章目录 &#x1f4af;前言&#x1f4af;常量的概念和作用&#x1f4af;C语言中 const 的应用与限制#define 和 enum 的使用方法 &#x1f4af;C 中 const 的计算方法和处理&#x1f4af;代码实例和应用区别&#x1f4af;C 和 C 的常量兼容性问题和负载&#x1f4af;分析 C 和…

《生成式 AI》课程 第3講 CODE TASK执行文章摘要的机器人

课程 《生成式 AI》课程 第3講&#xff1a;訓練不了人工智慧嗎&#xff1f;你可以訓練你自己-CSDN博客 任务1:总结 1.我们希望你创建一个可以执行文章摘要的机器人。 2.设计一个提示符&#xff0c;使语言模型能够对文章进行总结。 model: gpt-4o-mini,#gpt-3.5-turbo, import…

【大数据学习 | flume】flume Sink Processors与拦截器Interceptor

1. Failover Sink Processor 故障转移处理器可以同时指定多个sink输出&#xff0c;按照优先级高低进行数据的分发&#xff0c;并具有故障转移能力。 需要修改第一台服务器agent a1.sourcesr1 a1.sinksk1 k2 a1.channelsc1 a1.sources.r1.typenetcat a1.sources.r1.bindworker…

i春秋-登陆(sql盲注爆字段,.git缓存利用)

练习平台地址 竞赛中心 题目描述 先登陆再说 题目内容 就是一个登录框 测试登录 用户名&#xff1a;admin or 11# 密码&#xff1a;随便输 返回密码错误 用户名&#xff1a;随便输 密码&#xff1a;随便输 返回用户名不存在 这里就可以确定时一个bool盲注了 这里提供一个lik…

【爬虫实战】抓取某站评论

【爬虫实战】抓取某站评论 声明&#xff1a;本文中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;不提供完整代码&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; 方式一&#xff1a;JS逆向request发…

【微软:多模态基础模型】(1)从专家到通用助手

欢迎关注【youcans的AGI学习笔记】原创作品 【微软&#xff1a;多模态基础模型】&#xff08;1&#xff09;从专家到通用助手 【微软&#xff1a;多模态基础模型】&#xff08;2&#xff09;视觉理解 【微软&#xff1a;多模态基础模型】&#xff08;3&#xff09;视觉生成 【微…

HarmonyOS ArkUI(基于ArkTS) 开发布局 (中)

HarmonyOS ArkUI(基于ArkTS) 开发布局 &#xff08;上&#xff09; 四 层叠布局 (Stack) 层叠布局&#xff08;StackLayout&#xff09;用于在屏幕上预留一块区域来显示组件中的元素&#xff0c;提供元素可以重叠的布局。层叠布局通过Stack容器组件实现位置的固定定位与层叠&…