HarmonyOS ArkUI(基于ArkTS) 开发布局 (上)

一  ArkUI(基于ArkTS)概述

基于ArkTS的声明式开发范式的方舟开发框架是一套开发极简、高性能、支持跨设备的UI开发框架,提供了构建应用UI所必需的能力

点击详情

特点

  • 开发效率高,开发体验好

    • 代码简洁:通过接近自然语义的方式描述UI,不必关心框架如何实现UI绘制和渲染。
    • 数据驱动UI变化:让开发者更专注自身业务逻辑的处理。当UI发生变化时,开发者无需编写在不同的UI之间进行切换的UI代码, 开发人员仅需要编写引起界面变化的数据,具体UI如何变化交给框架。
    • 开发体验好:界面也是代码,让开发者的编程体验得到提升。
  • 性能优越

    • 声明式UI前端和UI后端分层:UI后端采用C++语言构建,提供对应前端的基础组件、布局、动效、交互事件、组件状态管理和渲染管线。
    • 语言编译器和运行时的优化:统一字节码、高效FFI(Foreign Function Interface)、AOT(Ahead Of Time)、引擎极小化、类型优化等。
  • 生态容易快速推进

    能够借力主流语言生态快速推进,语言相对中立友好,有相应的标准组织可以逐步演进。

二 布局概述

组件按照布局的要求依次排列,构成应用的页面。在声明式UI中,所有的页面都是由自定义组件构成,开发者可以根据自己的需求,选择合适的布局进行页面开发。

如何选择布局

声明式UI提供了以下10种常见布局,开发者可根据实际应用场景选择合适的布局进行页面开发。

布局应用场景
线性布局(Row、Column)如果布局内子元素超过1个时,且能够以某种方式线性排列时优先考虑此布局。
层叠布局(Stack)组件需要有堆叠效果时优先考虑此布局。层叠布局的堆叠效果不会占用或影响其他同容器内子组件的布局空间。例如Panel作为子组件弹出时将其他组件覆盖更为合理,则优先考虑在外层使用堆叠布局。
弹性布局(Flex)弹性布局是与线性布局类似的布局方式。区别在于弹性布局默认能够使子组件压缩或拉伸。在子组件需要计算拉伸或压缩比例时优先使用此布局,可使得多个容器内子组件能有更好的视觉上的填充效果。
相对布局(RelativeContainer)相对布局是在二维空间中的布局方式,不需要遵循线性布局的规则,布局方式更为自由。通过在子组件上设置锚点规则(AlignRules)使子组件能够将自己在横轴、纵轴中的位置与容器或容器内其他子组件的位置对齐。设置的锚点规则可以天然支持子元素压缩、拉伸、堆叠或形成多行效果。在页面元素分布复杂或通过线性布局会使容器嵌套层数过深时推荐使用。
栅格布局(GridRow、GridCol)栅格是多设备场景下通用的辅助定位工具,可将空间分割为有规律的栅格。栅格不同于网格布局固定的空间划分,可以实现不同设备下不同的布局,空间划分更随心所欲,从而显著降低适配不同屏幕尺寸的设计及开发成本,使得整体设计和开发流程更有秩序和节奏感,同时也保证多设备上应用显示的协调性和一致性,提升用户体验。推荐内容相同但布局不同时使用。
媒体查询(@ohos.mediaquery)媒体查询可根据不同设备类型或同设备不同状态修改应用的样式。例如根据设备和应用的不同属性信息设计不同的布局,以及屏幕发生动态改变时更新应用的页面布局。
列表(List)使用列表可以高效地显示结构化、可滚动的信息。在ArkUI中,列表具有垂直和水平布局能力和自适应交叉轴方向上排列个数的布局能力,超出屏幕时可以滚动。列表适合用于呈现同类数据类型或数据类型集,例如图片和文本。
网格(Grid)网格布局具有较强的页面均分能力、子元素占比控制能力。网格布局可以控制元素所占的网格数量、设置子元素横跨几行或者几列,当网格容器尺寸发生变化时,所有子元素以及间距等比例调整。推荐在需要按照固定比例或者均匀分配空间的布局场景下使用,例如计算器、相册、日历等。
轮播(Swiper)轮播组件通常用于实现广告轮播、图片预览等。
选项卡(Tabs)选项卡可以在一个页面内快速实现视图内容的切换,一方面提升查找信息的效率,另一方面精简用户单次获取到的信息量。

三 线性布局 (Row/Column)

Row和Column是最常用的布局,类似于 前端中 的 flex 

Column 纵向布局

它默认子元素水平居中,纵向排列

@Entry
@Component
struct Index {
  @State message: string = 'Hello World';

  build() {
    Column() {
       Column(){
       }
       .width('80%')
       .height('20%')
       .backgroundColor('#ff6700')
       .margin({bottom:20})
      Column(){
      }
      .width('80%')
      .height('20%')
      .backgroundColor('#ff6700')
      .margin({bottom:20})
      Column(){
      }
      .width('80%')
      .height('20%')
      .backgroundColor('#ff6700')
      .margin({bottom:20})

    }
    .height('100%')
    .width('100%')
  }
}

Row 横向布局

它默认子元素水平居中,纵向排列,这里我没有设置间据它门贴在一起了

@Entry
@Component
struct Index {
  @State message: string = 'Hello World';

  build() {
    Row() {
       Column(){
       }
       .width('80%')
       .height('20%')
       .backgroundColor('#ff6700')
       .margin({bottom:20})
      Column(){
      }
      .width('80%')
      .height('20%')
      .backgroundColor('#ff6700')
      .margin({bottom:20})
      Column(){
      }
      .width('80%')
      .height('20%')
      .backgroundColor('#ff6700')
      .margin({bottom:20})

    }
    .height('100%')
    .width('100%')
  }
}

Space 设置子元素的间距

线性布局默认不会根据父元素收缩,这个跟 flex有区别

alignItems 交叉轴方向布局

交叉轴为垂直方向时(Row),取值为VerticalAlign类型,可选值:Top,Center,Bottom

水平方向(Column)取值为HorizontalAlign类型,可选值:Start,Center,End

// 官方代码
Column({}) {
  Column() {
  }.width('80%').height(50).backgroundColor(0xF5DEB3)

  Column() {
  }.width('80%').height(50).backgroundColor(0xD2B48C)

  Column() {
  }.width('80%').height(50).backgroundColor(0xF5DEB3)
}.width('100%').alignItems(HorizontalAlign.Start).backgroundColor('rgb(242,242,242)')
Row({}) {
  Column() {
  }.width('20%').height(30).backgroundColor(0xF5DEB3)

  Column() {
  }.width('20%').height(30).backgroundColor(0xD2B48C)

  Column() {
  }.width('20%').height(30).backgroundColor(0xF5DEB3)
}.width('100%').height(200).alignItems(VerticalAlign.Top).backgroundColor('rgb(242,242,242)')

justifyContent主轴对齐

可选值:FlexAlign.(Start | Center | End | SpaceBetween | SpaceAround | SpaceEvenly) 

自适应拉伸

在线性布局下,常用空白填充组件Blank,在容器主轴方向自动填充空白空间,达到自适应拉伸效果。

自适应缩放

自适应缩放是指子元素随容器尺寸的变化而按照预设的比例自动调整尺寸,适应各种不同大小的设备。在线性布局中,可以使用以下两种方法实现自适应缩放。

  • 父容器尺寸确定时,使用layoutWeight属性设置子元素和兄弟元素在主轴上的权重,忽略元素本身尺寸设置,使它们在任意尺寸的设备下自适应占满剩余空间
  • 父容器尺寸确定时,使用百分比设置子元素和兄弟元素的宽度,使他们在任意尺寸的设备下保持固定的自适应占比。

未完待续

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/917282.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

UE5 材质里面画圆锯齿严重的问题

直接这么画圆会带来锯齿,我们对锯齿位置进行模糊 可以用smoothstep,做值的平滑过渡(虽然不是模糊,但是类似)

[C++] 智能指针

文章目录 智能指针的使用原因及场景分析为什么需要智能指针?异常抛出导致的资源泄漏问题分析 智能指针与RAIIC常用智能指针 使用智能指针优化代码优化后的代码优化点分析 析构函数中的异常问题解决方法 RAII 和智能指针的设计思路详解什么是 RAII?RAII 的…

Python学习笔记(1)装饰器、异常检测、标准库概览、面向对象

1 装饰器 装饰器(decorators)是 Python 中的一种高级功能,它允许你动态地修改函数或类的行为。 装饰器是一种函数,它接受一个函数作为参数,并返回一个新的函数或修改原来的函数。 语法使用 decorator_name 来应用在…

为什么 Vue3 封装 Table 组件丢失 expose 方法呢?

在实际开发中,我们通常会将某些常见组件进行二次封装,以便更好地实现特定的业务需求。然而,在封装 Table 组件时,遇到一个问题:Table 内部暴露的方法,在封装之后的组件获取不到。 代码展示为: …

Spring boot + Vue2小项目基本模板

Spring boot Vue2小项目基本模板 基本介绍基本环境安装项目搭建最终效果展示 基本介绍 项目来源哔哩哔哩的青戈,跟着学习搭建自己的简单vue小项目;看别人的项目总觉得看不懂,需要慢慢打磨 这里目前只简单的搭建了菜单导航和表格页面&#x…

nacos-operator在k8s集群上部署nacos-server2.4.3版本踩坑实录

文章目录 操作步骤1. 拉取仓库代码2. 安装nacos-operator3. 安装nacos-server 坑点一坑点二nacos-ui页面访问同一集群环境下微服务连接nacos地址配置待办参考文档 操作步骤 1. 拉取仓库代码 (这一步主要用到代码中的相关yml文件,稍加修改用于部署容器&…

论文概览 |《IJAEOG》2024.09 Vol.133(下)

本次给大家整理的是《International Journal of Applied Earth Observation and Geoinformation》杂志2024年09月第133期的论文的题目和摘要,一共包括61篇SCI论文!由于论文过多,我们将通过两篇文章进行介绍,本篇文章介绍第31--第6…

Unity类银河战士恶魔城学习总结(P129 Craft UI 合成面板UI)

【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili 教程源地址:https://www.udemy.com/course/2d-rpg-alexdev/ 本章节实现了合成面板的UI设置 UI_CraftWindow.cs 字段作用: UI 组件: itemName / itemDescription / icon&#…

【WPF】Prism学习(三)

Prism Commands 1.复合命令(Composite Commanding) 这段内容主要介绍了在应用程序中如何使用复合命令(Composite Commands)来实现多个视图模型(ViewModels)上的命令。以下是对这段内容的解释: …

模型压缩相关技术概念澄清(量化/剪枝/知识蒸馏)

1.模型压缩背景 随着深度学习技术的不断发展,模型的规模和复杂度也随之增加。大型模型往往具有更高的精度和更强的泛化能力,但在实际应用中,模型的大小却成为了一个制约因素。模型体积过大会导致存储、传输和推理速度等方面的瓶颈&#xff0…

‌EAC(Estimate at Completion)和ETC(Estimate to Complete)

‌EAC 预计完工成本ETC 预计尚需成本Estimate at CompletionEstimate to Complete完成预估完工时尚需成本估算 EAC ETC ACETC EAC – AC 预测项目总成本,包含了到目前为止实际发生的成本(AC)和预计将发生的成本。如果EAC大于BAC&#xf…

计算机网络 (6)物理层的基本概念

前言 计算机网络物理层是OSI模型(开放式系统互联模型)中的第一层,也是七层中的最底层,它涉及到计算机网络中数据的物理传输。 一、物理层的主要任务和功能 物理层的主要任务是处理物理传输介质上的原始比特流,确保数据…

探索大规模语言模型(LLM)在心理健康护理领域中的应用与潜力

概述 心理健康是公共卫生最重要的领域之一。根据美国国家精神卫生研究所(NIMH)的数据,到 2021 年,22.8% 的美国成年人将患上某种形式的精神疾病。在全球范围内,精神疾病占非致命性疾病负担的 30%,并被世界…

深度学习之GAN应用

1 GAN的应用(文本生成) 1.1 GAN为什么不适合文本任务? ​ GAN在2014年被提出之后,在图像生成领域取得了广泛的研究应用。然后在文本领域却一直没有很惊艳的效果。主要在于文本数据是离散数据,而GAN在应用于离散数据时…

15分钟学 Go 实战项目五 :简单电子商务网站(3W字完整例子)

简单的电子商务网站开发实战 项目概述 目标 实现用户注册登录功能开发商品浏览和搜索功能实现购物车管理完成订单处理流程 技术栈 类别技术选择说明Web框架Gin高性能HTTP框架数据库MySQL存储用户和商品信息缓存Redis购物车和会话管理ORMGORM数据库操作认证JWT用户身份验证…

C++- 基于多设计模式下的同步异步日志系统

第一个项目:13万字,带源代码和详细步骤 目录 第一个项目:13万字,带源代码和详细步骤 1. 项目介绍 2. 核心技术 3. 日志系统介绍 3.1 为什么需要⽇志系统 3.2 ⽇志系统技术实现 3.2.1 同步写⽇志 3.2.2 异步写⽇志 4.知识点和单词补充 4.1单词补充 4.2知识点补充…

【AlphaFold3】开源本地的安装及使用

文章目录 安装安装DockerInstalling Docker on Host启用Rootless Docker 安装 GPU 支持安装 NVIDIA 驱动程序安装 NVIDIA 对 Docker 的支持 获取 AlphaFold 3 源代码获取基因数据库获取模型参数构建将运行 AlphaFold 3 的 Docker 容器 参考 AlphaFold3: https://github.com/goo…

【提高篇】3.4 GPIO(四,工作模式详解 下)

五,模拟输入输出 5.1 模拟功能 上下拉电阻断开,施密特触发器关闭,双 MOS 管也关闭。该模式用于 ADC 采集或者 DAC 输出,或者低功耗下省电。但要注意的是 GPIO本身并不具备模拟输出输入的功能。 5.2 模拟功能的特点 上拉电阻关闭下拉电阻关闭施密特触发器关闭双MOS管不…

向潜在安全信息和事件管理 SIEM 提供商提出的六个问题

收集和解读数据洞察以制定可用的解决方案是强大网络安全策略的基础。然而,组织正淹没在数据中,这使得这项任务变得复杂。 传统的安全信息和事件管理 ( SIEM ) 工具是组织尝试使用的一种方法,但由于成本、资源和可扩展性等几个原因&#xff0…

领域驱动系列-浅析VO、DTO、DO、PO

一、概念介绍 POJO(plain ordinary java object) :简单java对象,个人感觉POJO是最常见最多变的对象,是一个中间对象,也是我们最常打交道的对象。一个POJO持久化以后就是PO,直接用它传递、传递过…