DB-GPT系列(四):DB-GPT六大基础应用场景part1

一、基础问答

进入DB-GPT后,再在线对话默认的基础功能就是对话功能。这里我们可以和使用通义千问、文心一言等在线大模型类似的方法, 来和DB-GPT进行对话。

但是值得注意的是,DB-GPT的输出结果是在内置提示词基础之上进行的回答,也就是说在DB-GPT中我们传输给模型任何问题,都会经过提示词模板修改后传输给底层模型。

可以在探索广场中找到Chat Normal功能

二、知识库问答

Chat Knowledge(知识库对话)借助RAG实现私有知识库问答,用户可以自定义传输企业业务说明文档、专家文档或数据字典等信息,并围绕相关问题进行问答,从而辅助用户快速了解企业业务,或辅助进行业务决策等。

知识库问答的操作主要分为以下几个步骤:

  • 创建知识库
  • 上传文档知识
  • 等待文档切片+向量化
  • 开始知识库对话

下面对这几个步骤进行逐一说明

1、创建知识库

应用管理内切换到知识库tab页,点击创建知识库

填写知识库基础配置:

  • 知识库名称:起一个贴切知识库内容的名字
  • 存储类型:有Vector Store、Knowledge Graph、Full Text
  • 领域类型:目前只有Normal
  • 描述:写一下知识库简要的描述

这里的存储类型Vector Store表示向量存储、Knowledge Graph表示知识图谱存储、Full Text表示全文存储。

2、上传文档知识

接着在2 知识库类型中,根据自身的文档类型选择进行文档进行上传。

目前支持的文档类型有:

  • 文本:填写原始文本内容
  • 网址:读取在线URL的内容、
  • 文档:目前支持文档类型有PDF, PowerPoint, Excel, Word, Text, Markdown, Zip, Csv
  • 语雀文档:读取语雀(语雀,为每一个人提供优秀的文档和知识库工具 · 语雀)的在线文档内容

这里以上传本地word文档为例子,上传界面如下:

我们上传的文档其实是上传到DB-GPT运行的服务器上(例如公司服务器),本质上 其实还是“本地运行”,并不会存在数据泄露的风险。具体每个知识库文档地址为: /root/autodltmp/DB-GPT/pilot/data

3、等待文档切片+向量化

接下来回到DB-GPT知识库创建页面,可以继续选择文本切分方式,除非特殊情况,推荐选择默认的自动切分方法,然后点击Process即可。

DB-GPT支持下面四种切分方法:

  • 自动切片
  • chunk size
  • paragraph
  • separator

(1)自动切片

不需要设置任何分片参数

(2)chunk size

通过设置chunk_size、chunk_overlap两个参数来控制切分。

chunk_size:对输入文本序列进行切分的最大长度。

chunk_overlap:相邻两个chunk之间的重叠token数量。为了保证文本语义的连贯性,相邻chunk会有一定的重叠。chunk_overlap控制这个重叠区域的大小。

(3)paragraph

通过设置分隔符来区分自然段

查看文档切分进度

可以查看文档的具体切分结果

4、开始知识库对话

对话会默认载入知识库基本背景,比如当我们输入你好,你擅长什么?时,回答会围绕DBGPT的知识库相关内容进行问答

查看DB-GPT后台的处理情况

DB-GPT实现的私有知识库问答流程远比最热门RAG之一的LangChain-CahtChat复杂,在后续解读DB-GPT项目源码的文章会介绍

三、ChatExcel功能

Chat Excel(Excel对话)可以围绕某个Excel数据文件进行快速分析,允许用户上传数据文件并直接对其进行分析。

在下载的DB-GPT源码目录DB-GPT\docker\examples\excel下,有一个example.xlsx的示例excel文件。

该数据集数据集包含关于各种细分市场、国家、产品和日期的销售交易信息。包括折扣档次、销售单 位、定价、总销售额、成本、利润,以及交易的月份和年份等详细信息,基本情况如下:

上传了文件之后,发现系统会自动创建一段总结分析。

这里其实是在默认提示词模板作用下,自动对数据文件进行的分析。另外返回的结果是英文,也跟系统的默认提示词有关。后续解读DB-GPT项目源码的文章会介绍如何设置并修改这些提示词模板。

接下来,我们可以进一步提问题继续分析。

例如输入分析不同产品在不同国家的销售趋势,找出一些在某些国家销售势头好的产品。

分析结果如下:

在SQL页会看到DB-GPT也会将分析转换为SQL语句。

从SQL结果来看,很好得理解了上面问题的分析意图。

SELECT
  Country,
  Product,
  SUM(Sales) AS TotalSales
FROM
  excel_data
GROUP BY
  Country,
  Product
ORDER BY
  Country,
  TotalSales DESC;

上传完的excel数据文件数据,也保存在服务器的/root/DB-GPT/pilot/data/文件夹内

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/916999.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

海量数据面试题

目录 前言 什么是海量数据 一、利用位图解决 二、利用布隆过滤器解决 三、利用哈希切割解决 前言 在大数据时代,海量数据处理已成为技术领域中的一项重要课题。无论是企业级应用、互联网平台,还是人工智能和机器学习的实现,都离不开对大规…

操作系统实验:在linux下用c语言模拟进程调度算法程序

文章目录 1、实验内容2、实验结果及分析3、如何在linux下编写并执行c语言程序以及实验源代码gcc -o test test.c1、实验内容 1)用C语言编程实现对N个进程采用某种进程调度算法(如动态优先权调度算法、先来先服务算法、短进程优先算法、时间片轮转调度算法)调度执行的模拟。…

前端开发迈向全栈之路:规划与技能

一、前端开发与全栈开发的差异 前端开发主要负责构建和实现网页、Web 应用程序和移动应用的用户界面。其工作重点在于网页设计和布局,使用 HTML 和 CSS 技术定义页面的结构、样式和布局,同时运用前端框架和库如 React、Angular 或 Vue.js 等构建交互式和…

GOLANG+VUE后台管理系统

1.截图 2.后端工程截图 3.前端工程截图

中文书籍对《人月神话》的引用(161-210本):微软的秘密

中文书籍对《人月神话》的引用(第001到160本)>> 《人月神话》于1975年出版,1995年出二十周年版。自出版以来,该书被大量的书籍和文章引用,直到现在热潮不退。 2023年,清华大学出版社推出《人月神话》…

IO流(五):字节流-输入流(Inpustream)、输出流(OutputStream)--使用场景、弊端、注意事项、代码演示。

目录 1、什么是字节流? 2、字节输入流--FileInputStream 2.1 int read()方式代码演示以及注释 2.1.1 读取一个字节 2.1.2 将整个文件挨个字节读取并打印演示 2.2 int read(byte[] buffer)方式代码演示以及注释 2.2 .1 一次读取3字节演示 2.2.2 一次性读取全…

直流保护电路设计及保护器件参数说明和选型

在工控产品设计中时常会涉及到电源保护的电路设计的问题,在深圳瑞隆源电子给出的参考电路来切入主题,对气体放电管、压敏电阻和TVS这三类保护器件的参数及选型进行详细说明,以达到深刻理解的目的。 图1 直流保护电路 举例说明,若…

FastGPT部署通义千问Qwen和智谱glm模型|OneAPI配置免费的第三方API

继这篇博客之后 从零开始FastGPT本地部署|Windows 有同学问,不想在多个平台申请API-Key,不好管理且要付费,有木有白嫖方案呀? 答:有啊。用硅基流动。 注册方法看这篇 【1024送福利】硅基流动送2000万token啦&#xff0…

机器学习day2-特征工程

四.特征工程 1.概念 一般使用pandas来进行数据清洗和数据处理、使用sklearn来进行特征工程 将任意数据(文本或图像等)转换为数字特征,对特征进行相关的处理 步骤:1.特征提取;2.无量纲化(预处理&#xf…

sql数据库-排序查询-DQL

目录 语法 排序方式 举例 将表按年龄从小到大排序 将表按年龄从大到小排序 ​编辑 多重排序 将表按年龄升序,年龄相同按入职时间降序 语法 select * from 表名 order by 字段名1 排序方式1,字段2 排序方式2; 排序方式 升序:ASC&…

响应“一机两用”政策 落实政务外网安全

在数字化时代,政务办公外网安全的重要性日益凸显,特别是在“一机两用”的背景下,即同一台终端既要处理政务内网的数据,又要访问互联网,这对网络安全提出了更高的要求。深信达SPN安全上网方案,即反向沙箱技术…

测试实项中的偶必现难测bug--互斥逻辑异常

问题: 今天线上出了一个很奇怪的问题,看现象和接口是因为数据问题导致app模块奔溃 初步排查数据恢复后还是出现了数据重复的问题,查看后台实际只有一条数据,但是显示在app却出现了两条一模一样的置顶数据 排查: 1、顺着这个逻辑,我们准备在预发复现这个场景,先是cop…

Burpsuite的安装使用说明——【渗透工具介绍与使用】

# 前记 **工欲善其事必先利其器,本系列先介绍一些常见的安全工具的安装与使用** 该文章介绍的是Burpsuite的安装使用说明 > 🍀 作者简介 > 小菜鸡罢了,研究过漏洞、扫过端口、写过脚本,迷恋着CTF,脑袋里充满了各…

如何在 WordPress 中轻松强制所有用户退出登录

作为一名长期管理 WordPress 网站的站长,我深知维护网站安全性的重要性。尤其是在面对会员网站或付费内容平台时,确保所有用户的登录状态是最新的,是维持网站正常运营的关键之一。今天,我就分享一下如何通过简单的步骤&#xff0c…

SNN学习(2):深入了解SNN及LIF神经元的原理和运行过程

目录 一、STDP机制 1、STDP 的基本原理 权重调整的“时间差依赖性” 2、STDP 的数学模型 二、SNN的应用场景 三、从人工神经网络ANN到脉冲神经网络SNN 1、脉冲 2、稀疏性(Sparsity) 3、事件驱动处理(静态抑制) 四、脉冲…

运动汇 专业的比赛管理平台数据获取

在获取到运动汇的网站链接后,界面如图所示: 右键检查,我们会发现没有任何数据,只有当我们点开这些"第一单元"、"第二单元"等,数据才会加载出来; 由于我们只需要分析这一个网页并获取其中的数据&a…

STM32 BootLoader 刷新项目 (十) Flash擦除-命令0x56

STM32 BootLoader 刷新项目 (十) Flash擦除-命令0x56 1. STM32F407 BootLoader 中的 Flash 擦除功能详解 在嵌入式系统中,BootLoader 的设计是非常关键的部分,它负责引导主程序的启动、升级以及安全管理。而在 STM32F407 等 MCU 上实现 BootLoader&…

rust高级特征

文章目录 不安全的rust解引用裸指针裸指针与引用和智能指针的区别裸指针使用解引用运算符 *,这需要一个 unsafe 块调用不安全函数或方法在不安全的代码之上构建一个安全的抽象层 使用 extern 函数调用外部代码rust调用C语言函数rust接口被C语言程序调用 访问或修改可…

45.第二阶段x86游戏实战2-hook监控实时抓取游戏lua

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 本次游戏没法给 内容参考于:微尘网络安全 本人写的内容纯属胡编乱造,全都是合成造假,仅仅只是为了娱乐,请不要…

数据结构 ——— 层序遍历链式二叉树

目录 链式二叉树示意图​编辑 何为层序遍历 手搓一个链式二叉树 实现层序遍历链式二叉树 链式二叉树示意图 何为层序遍历 和前中后序遍历不同,前中后序遍历链式二叉树需要利用递归才能遍历 而层序遍历是非递归的形式,如上图:层序遍历的…