机器学习深度学习——NLP实战(自然语言推断——注意力机制实现)

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——NLP实战(自然语言推断——数据集)
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

NLP实战(自然语言推断——注意力机制实现)

  • 引入
  • 模型
    • 注意(Attending)
    • 比较
    • 聚合
    • 整合代码
  • 训练和评估模型
    • 读取数据集
    • 创建模型
    • 训练和评估模型
    • 使用模型
  • 小结

引入

在之前已经介绍了什么是自然语言推断,并且下载并处理了SNLI数据集。由于许多模型都是基于复杂而深度的架构,因此提出用注意力机制解决自然语言推断问题,并且称之为“可分解注意力模型”。这使得模型没有循环层或卷积层,在SNLI数据集上以更少的参数实现了当时的最佳结果。下面就实现这种基于注意力的自然语言推断方法(使用MLP),如下图所述:
在这里插入图片描述
这里的任务就是要将预训练GloVe送到注意力和MLP的自然语言推断架构。

模型

与保留前提和假设中词元的顺序,我们可以将一个文本序列中的词元与另一个文本序列中的每个词元对齐,然后比较和聚合这些信息,以预测前提和假设之间的逻辑关系。这和机器翻译中源句和目标句之间的词元对齐类似,前提和假设之间的词元对齐可以通过注意力机制来灵活完成。如下所示就是使用注意力机制来实现自然语言推断的模型图:
在这里插入图片描述
上面的i和i相对,前提中的sleep会对应tired,假设中的tired对应的是need sleep。
从高层次讲,它由三个联合训练的步骤组成:对齐、比较和汇总,下面会通过代码来解释和实现。

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

注意(Attending)

第一步是将一个文本序列中的词元与另一个序列中的每个词元对齐。假设前提是“我需要睡眠”,假设是“我累了”。由于语义上的相似性,我们不妨将假设中的“我”与前提中的“我”对齐,将假设中的“累”与前提中的“睡眠”对齐。同样,我们可能希望将前提中的“我”与假设中的“我”对齐,将前提中“需要睡眠”与假设中的“累”对齐。
注意,这种对齐是使用的加权平均的“软”对齐,其中理想情况下较大的权重与要对齐的词元相关联。为了便于演示,上图是用了“硬”对齐的方式来展示。
现在,我们要详细描述使用注意力机制的软对齐。

A = ( a 1 , . . . , a m ) 和 B = ( b 1 , . . . , b n ) A=(a_1,...,a_m)和B=(b_1,...,b_n) A=(a1,...,am)B=(b1,...,bn)
分别表示前提和假设,其词元数量分别为m和n,其中:
a 1 , b j ∈ R d 是 d 维的词向量 a_1,b_j∈R^d是d维的词向量 a1,bjRdd维的词向量
关于软对齐,我们将注意力权重计算为:
e i j = f ( a i ) T f ( b j ) e_{ij}=f(a_i)^Tf(b_j) eij=f(ai)Tf(bj)
其中函数f是在下面的mlp函数中定义的多层感知机。输出维度f由mlp的num_hiddens参数指定。

def mlp(num_inputs, num_hiddens, flatten):
    net = []
    net.append(nn.Dropout(0.2))
    net.append(nn.Linear(num_inputs, num_hiddens))
    net.append(nn.ReLU())
    if flatten:
        net.append(nn.Flatten(start_dim=1))
    net.append(nn.Dropout(0.2))
    net.append(nn.Linear(num_hiddens, num_hiddens))
    net.append(nn.ReLU())
    if flatten:
        net.append(nn.Flatten(start_dim=1))
    return nn.Sequential(*net)

值得注意的是,上式中,f分别输入ai和bi,而不是把它们一对放在一起作为输入。这种分解技巧导致f只有m+n次计算(线性复杂度),而不是mn次计算(二次复杂度)。
对上式中的注意力权重进行规范化,我们计算假设中所有词元向量的加权平均值,以获得假设的表示,该假设与前提中索引i的词元进行软对齐:
β i = ∑ j = 1 n e x p ( e i j ) ∑ k = 1 n e x p ( e i k ) b j β_i=\sum_{j=1}^n\frac{exp(e_{ij})}{\sum_{k=1}^nexp(e_{ik})}b_j βi=j=1nk=1nexp(eik)exp(eij)bj
同理,我们计算假设中索引为j的每个词元与前提词元的软对齐:
α j = ∑ i = 1 m e x p ( e i j ) ∑ k = 1 m e x p ( e k j ) a i α_j=\sum_{i=1}^m\frac{exp(e_{ij})}{\sum_{k=1}^mexp(e_{kj})}a_i αj=i=1mk=1mexp(ekj)exp(eij)ai
下面,我们定义Attend类来计算假设(beta)与输入前提A的软对齐以及前提(alpha)与输入假设B的软对齐。

class Attend(nn.Module):
    def __init__(self, num_inputs, num_hiddens, **kwargs):
        super(Attend, self).__init__(**kwargs)
        self.f = mlp(num_inputs, num_hiddens, flatten=False)

    def forward(self, A, B):
        # A/B的形状:(批量大小,序列A/B的词元数,embed_size)
        # f_A/f_B的形状:(批量大小,序列A/B的词元数,num_hiddens)
        f_A = self.f(A)
        f_B = self.f(B)
        # e的形状:(批量大小,序列A的词元数,序列B的词元数)
        e = torch.bmm(f_A, f_B.permute(0, 2, 1))
        # beta的形状:(批量大小,序列A的词元数,embed_size),
        # 意味着序列B被软对齐到序列A的每个词元(beta的第1个维度)
        beta = torch.bmm(F.softmax(e, dim=-1), B)
        # beta的形状:(批量大小,序列B的词元数,embed_size),
        # 意味着序列A被软对齐到序列B的每个词元(alpha的第1个维度)
        alpha = torch.bmm(F.softmax(e.permute(0, 2, 1), dim=-1), A)
        return beta, alpha

比较

在下一步中,我们将一个序列中的词元与和该词元软对齐的另一个序列进行比较。注意,软对齐中,一个序列中的所有词元(尽管可能具有不同的注意力权重)将与另一个序列中的词元进行比较。
在比较步骤中,我们将来自一个序列的词元的连结(运算符[·,·])和来自另一个序列的对其的词元送入函数g(一个多层感知机):
v A , i = g ( [ a i , β i ] ) , i = 1 , . . . , m v B , j = g ( [ b j , α j ] ) , j = 1 , . . . , n 其中, v A , i 指:所有假设中的词元与前提中词元 i 软对齐,再与词元 i 的比较; v B , j 指:所有前提中的词元与假设中词元 j 软对齐,再与词元 j 的比较。 v_{A,i}=g([a_i,β_i]),i=1,...,m\\ v_{B,j}=g([b_j,α_j]),j=1,...,n\\ 其中,v_{A,i}指:所有假设中的词元与前提中词元i软对齐,再与词元i的比较;\\ v_{B,j}指:所有前提中的词元与假设中词元j软对齐,再与词元j的比较。 vA,i=g([ai,βi]),i=1,...,mvB,j=g([bj,αj]),j=1,...,n其中,vA,i指:所有假设中的词元与前提中词元i软对齐,再与词元i的比较;vB,j指:所有前提中的词元与假设中词元j软对齐,再与词元j的比较。
下面的Compare类定义了比较的步骤:

class Compare(nn.Module):
    def __init__(self, num_inputs, num_hiddens, **kwargs):
        super(Compare, self).__init__(**kwargs)
        self.g = mlp(num_inputs, num_hiddens, flatten=False)

    def forward(self, A, B, beta, alpha):
        V_A = self.g(torch.cat([A, beta], dim=2))
        V_B = self.g(torch.cat([B, alpha], dim=2))
        return V_A, V_B

聚合

现在我们有两组比较向量:
v A , i 和 v B , j v_{A,i}和v_{B,j} vA,ivB,j
在最后一步中,我们将聚合这些信息以推断逻辑关系。我们首先求和这两组比较向量:
v A = ∑ i = 1 m v A , i , v B = ∑ j = 1 n v B , j v_A=\sum_{i=1}^mv_{A,i},v_B=\sum_{j=1}^nv_{B,j} vA=i=1mvA,i,vB=j=1nvB,j
接下来,我们将两个求和结果的连结提供给函数h(一个多层感知机),以获得逻辑关系的分类结果:
y ^ = h ( [ v A , v B ] ) \hat{y}=h([v_A,v_B]) y^=h([vA,vB])
聚合步骤在以下Aggregate类中定义。

class Aggregate(nn.Module):
    def __init__(self, num_inputs, num_hiddens, num_outputs, **kwargs):
        super(Aggregate, self).__init__(**kwargs)
        self.h = mlp(num_inputs, num_hiddens, flatten=True)
        self.linear = nn.Linear(num_hiddens, num_outputs)

    def forward(self, V_A, V_B):
        # 对两组比较向量分别求和
        V_A = V_A.sum(dim=1)
        V_B = V_B.sum(dim=1)
        # 将两个求和结果的连结送到多层感知机中
        Y_hat = self.linear(self.h(torch.cat([V_A, V_B], dim=1)))
        return Y_hat

整合代码

通过将注意步骤、比较步骤和聚合步骤组合在一起,我们定义了可分解注意力模型来联合训练这三个步骤:

class DecomposableAttention(nn.Module):
    def __init__(self, vocab, embed_size, num_hiddens, num_inputs_attend=100,
                 num_inputs_compare=200, num_inputs_agg=400, **kwargs):
        super(DecomposableAttention, self).__init__(**kwargs)
        self.embedding = nn.Embedding(len(vocab), embed_size)
        self.attend = Attend(num_inputs_attend, num_hiddens)
        self.compare = Compare(num_inputs_compare, num_hiddens)
        # 有3种可能的输出:蕴涵、矛盾和中性
        self.aggregate = Aggregate(num_inputs_agg, num_hiddens, num_outputs=3)

    def forward(self, X):
        premises, hypotheses = X
        A = self.embedding(premises)
        B = self.embedding(hypotheses)
        beta, alpha = self.attend(A, B)
        V_A, V_B = self.compare(A, B, beta, alpha)
        Y_hat = self.aggregate(V_A, V_B)
        return Y_hat

训练和评估模型

现在,我们将在SNLI数据集上对定义好的可分解注意力模型进行训练和评估。我们从读取数据集开始。

读取数据集

我们使用上节定义的函数下载并读取SNLI数据集,批量大小和序列长度分别设为256和50:

batch_size, num_steps = 256, 50
train_iter, test_iter, vocab = d2l.load_data_snli(batch_size, num_steps)

创建模型

我们将预训练好的100维GloVe嵌入来表示输入词元。我们将向量ai和bj的维数定义为100。f和g的输出维度被设置为200。然后我们创建一个模型实例,初始化参数,并加载GloVe嵌入来初始化输入词元的向量。

embed_size, num_hiddens, devices = 100, 200, d2l.try_all_gpus()
net = DecomposableAttention(vocab, embed_size, num_hiddens)
glove_embedding = d2l.TokenEmbedding('glove.6b.100d')
embeds = glove_embedding[vocab.idx_to_token]
net.embedding.weight.data.copy_(embeds)

训练和评估模型

现在我们可以在SNLI数据集上训练和评估模型。

lr, num_epochs = 0.001, 4
trainer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction="none")
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
    devices)
d2l.plt.show()

运行结果:

loss 0.495, train acc 0.805, test acc 0.826
443.5 examples/sec on [device(type=‘cpu’)]

运行图片:
在这里插入图片描述

使用模型

定义预测函数,输出一对前提和假设之间的逻辑关系。

#@save
def predict_snli(net, vocab, premise, hypothesis):
    """预测前提和假设之间的逻辑关系"""
    net.eval()
    premise = torch.tensor(vocab[premise], device=d2l.try_gpu())
    hypothesis = torch.tensor(vocab[hypothesis], device=d2l.try_gpu())
    label = torch.argmax(net([premise.reshape((1, -1)),
                           hypothesis.reshape((1, -1))]), dim=1)
    return 'entailment' if label == 0 else 'contradiction' if label == 1 \
            else 'neutral'

我们可以使用训练好的模型来获得对实例句子的自然语言推断结果:

print(predict_snli(net, vocab, ['he', 'is', 'good', '.'], ['he', 'is', 'bad', '.']))

预测结果:

‘contradiction’

小结

1、可分解注意模型包括三个步骤来预测前提和假设之间的逻辑关系:注意、比较和聚合。
2、通过注意力机制,我们可以将一个文本序列中的词元与另一个文本序列中的每个词元对齐,反之亦然。这种对齐是使用加权平均的软对齐,其中理想情况下,较大的权重与要对齐的词元相关联。
3、在计算注意力权重时,分解技巧会带来比二次复杂度更理想的线性复杂度。
4、我们可以使用预训练好的词向量作为下游自然语言处理任务的输入表示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/91662.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言暑假刷题冲刺篇——day5

目录 一、选择题 二、编程题 🎈个人主页:库库的里昂 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏✨收录专栏:C语言每日一练✨相关专栏:代码小游戏、C语言初阶、C语言进阶🤝希望作者…

JDBC详解

文章目录 一、引言1.1 如何操作数据库1.2 实际开发中,会采用客户端操作数据库吗? 二、JDBC(Java Database Connectivity)2.1 什么是 JDBC?2.2 JDBC 核心思想2.2.1 MySQL 数据库驱动2.2.2 JDBC API 2.3 环境搭建 三、JD…

使用飞桨实现的第一个AI项目——波士顿的房价预测

part1.首先引入相应的函数库: 值得说明的地方: (1)首先,numpy是一个python库,主要用于提供线性代数中的矩阵或者多维数组的运算函数,利用import numpy as np引入numpy,并将np作为它的别名 part…

4.16 TCP 协议有什么缺陷?

目录 升级 TCP 的工作很困难 TCP 建立连接的延迟 TCP 存在队头阻塞问题 网络迁移需要重新建立 TCP 连接 升级 TCP 的工作很困难;TCP 建立连接的延迟;TCP 存在队头阻塞问题;网络迁移需要重新建立 TCP 连接; 升级 TCP 的工作很…

Android开发之性能测试工具Profiler

前言 性能优化问题,在我们开发时都会遇到,但是在小厂和对自己要求不严格的情况下,我都很少去做性能优化; 在性能优化上,基本大家都是通过自己的开发经验和性能分析工具来发现问题,今天给大家分享一下小编最…

机器学习理论笔记(二):数据集划分以及模型选择

文章目录 1 前言2 经验误差与过拟合3 训练集与测试集的划分方法3.1 留出法(Hold-out)3.2 交叉验证法(Cross Validation)3.3 自助法(Bootstrap) 4 调参与最终模型5 结语 1 前言 欢迎来到蓝色是天的机器学习…

js中作用域的理解?

1.作用域 作用域,即变量(变量作用域又称上下文)和函数生效(能被访问)的区域或集合 换句话说,作用域决定了代码区块中变量和其他资源的可见性 举个例子 function myFunction() {let inVariable "函数内部变量"; } myFunction();//要先执行这…

SQL注入漏洞复现:探索不同类型的注入攻击方法

这篇文章旨在用于网络安全学习,请勿进行任何非法行为,否则后果自负。 准备环境 sqlilabs靶场 安装:详细安装sqlmap详细教程_sqlmap安装教程_mingzhi61的博客-CSDN博客 一、基于错误的注入 简介 基于错误的注入(Error-based I…

Tensorflow2.0搭建网络八股扩展

目录 一、自制数据集 准备:txt和图片 制作函数 二、断点继训,存取模型 1.读取保存的模型 2.保存模型 3.正确使用 三、参数提取,把参数存入txt 参数提取 四、acc/loss可视化,查看效果 1.前提开启:获取history…

DETR-《End-to-End Object Detection with Transformers》论文精读笔记

DETR(基于Transformer架构的目标检测方法开山之作) End-to-End Object Detection with Transformers 参考:跟着李沐学AI-DETR 论文精读【论文精读】 摘要 在摘要部分作者,主要说明了如下几点: DETR是一个端到端&am…

金蝶云星空对接打通管易云分布式调入单查询接口与其他入库单新增完结接口接口

金蝶云星空对接打通管易云分布式调入单查询接口与其他入库单新增完结接口接口 对接系统金蝶云星空 金蝶K/3Cloud(金蝶云星空)是移动互联网时代的新型ERP,是基于WEB2.0与云技术的新时代企业管理服务平台。金蝶K/3Cloud围绕着“生态、人人、体验…

深度学习12:胶囊神经网络

目录 研究动机 CNN的缺陷 逆图形法 胶囊网络优点 胶囊网络缺点 研究内容 胶囊是什么 囊间动态路由算法 整体框架 编码器 损失函数 解码器 传统CNN存在着缺陷(下面会详细说明),如何解决CNN的不足,Hinton提出了一种对于图…

Blender给一个对象添加多个动画

最近在做一个类似元宇宙的项目,需要使用3D建模软件来给3D模型添加动画,3D建模软件选择Blender(因为开源免费…),版本: V3.5 遇到的需求是同一个对象要添加多个动画,然后在代码里根据需要调取动画来执行。本…

Excel 打开文件提示内存或磁盘不足

Excel表格打开文件时,提示内存或磁盘空间不足,Microsoft Excel 无法再次打开或保存任何文档,这是很多人都会遇到的问题,该如何解决这个问题呢?如果你是用Excel表格打开某个文件时遇到提示内存或磁盘空间不足&#xff0…

java八股文面试[JVM]——垃圾回收器

jvm结构总结 常见的垃圾回收器有哪些? CMS(Concurrent Mark Sweep) 整堆收集器: G1 由于整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,所以总体上来说,…

求生之路2社区服务器sourcemod安装配置搭建教程centos

求生之路2社区服务器sourcemod安装配置搭建教程centos 大家好我是艾西,通过上文我们已经成功搭建了求生之路2的服务端。但是这个服务端是纯净的服务端,就是那种最纯粹的原版。如果想要实现插件、sm开头的命令等功能,需要安装这个sourcemod。…

机器人制作开源方案 | 桌面级机械臂--本体说明+驱动及控制

一、本体说明 1. 机械臂整体描述 该桌面级机械臂为模块化设计,包含主机模块1个、转台模块1个、二级摆动模块1个、可编程示教盒1个、2种末端执行器、高清摄像头,以及适配器、组装工具、备用零件等。可将模块快速组合为一个带被动关节的串联3自由度机械臂…

vue 简单实验 v-model 变量和htm值双向绑定

1.代码 <script src"https://unpkg.com/vuenext" rel"external nofollow" ></script> <div id"two-way-binding"><p>{{ message }}</p><input v-model"message" /> </div> <script>…

GPT---1234

GPT:《Improving Language Understanding by Generative Pre-Training》 下载地址:https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdfhttps://cdn.openai.com/research-covers/language-unsupervised/language_understa…

初识【类和对象】

目录 1.面向过程和面向对象初步认识 2.类的引入 3.类的定义 4.类的访问限定符及封装 5.类的作用域 6.类的实例化 7.类的对象大小的计算 8.类成员函数的this指针 1.面向过程和面向对象初步认识 C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的…