Redis环境部署(主从模式、哨兵模式、集群模式)

一、概述

  • REmote DIctionary Server(Redis) 是一个由 Salvatore Sanfilippo 写的 key-value 存储系统,是跨平台的非关系型数据库。
  • Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式、可选持久性的键值对(Key-Value)存储数据库,并提供多种语言的 API。
  • Redis 通常被称为数据结构服务器,因为值(value)可以是字符串(String)哈希(Hash)列表(list)集合(sets)有序集合(Sorted Set:)
  • Redis持久化方式:全量数据(RDB:Redis DataBase)增量请求(AOF:Append Only File)。全量数据在指定的时间间隔内生成数据集的时间点快照(point-in-time snapshot);增量请求则是把内存中的数据序列转化为操作请求,用于读取文件进行replay得到数据,这种类似于mysql的binlog。Redis的存储分为内存存储、磁盘存储和log文件三部分。
  • Redis有三种集群模式:主从模式Sentinel(哨兵)模式Cluster模式

官方文档:Docs

二、主从模式 部署

1)架构与简介

主从模式特点:

  • 主数据库可以进行读写操作,当读写操作导致数据变化时会自动将数据同步给从数据库
  • 从数据库一般都是只读的,并且接收主数据库同步过来的数据
  • 一个master可以拥有多个slave,但是一个slave只能对应一个master
  • slave挂了不影响其他slave的读和master的读和写,重新启动后会将数据从master同步过来
  • master挂了以后,不影响slave的读,但redis不再提供写服务,master重启后redis将重新对外提供写服务
  • master挂了以后,不会在slave节点中重新选一个master

工作机制:

  • 当slave启动后,主动向master发送SYNC命令。master接收到SYNC命令后在后台保存快照(RDB持久化)和缓存保存快照这段时间的命令,然后将保存的快照文件和缓存的命令发送给slave。slave接收到快照文件和命令后加载快照文件和缓存的执行命令。
  • 复制初始化后,master每次接收到的写命令都会同步发送给slave,保证主从数据一致性。

2)环境准备

IP主机名角色
local-168-182-110192.168.182.110master
local-168-182-111192.168.182.111slave1
local-168-182-112192.168.182.112slave2

3)下载解压Redis安装包(所有节点)

下载地址:Index of /releases/

highlighter- Bash

cd /opt/software
wget http://download.redis.io/releases/redis-7.0.3.tar.gz
# 解压
tar -xf redis-7.0.3.tar.gz
cd redis-7.0.3
# 设置环境变量
echo "export REDIS_HOME=/opt/software/redis-7.0.3">> /etc/profile
source /etc/profile

4)编译安装(所有节点)

highlighter- Bash

cd $REDIS_HOME
yum -y install gcc gcc++
make && make install
# 默认安装目录 /usr/local/bin

5)配置成服务(所有节点)

highlighter- SQL

cat << EOF > /usr/lib/systemd/system/redis.service
[Unit]
Description=Redis persistent key-value database
After=network.target
After=network-online.target
Wants=network-online.target


[Service]

ExecStart=/usr/local/bin/redis-server /usr/local/redis/redis.conf --supervised systemd

ExecStop=/usr/libexec/redis-shutdown

Type=forking

User=redis

Group=redis

RuntimeDirectory=redis

RuntimeDirectoryMode=0755

LimitNOFILE=65536

PrivateTmp=true




[Install]

WantedBy=multi-user.target

EOF



配置描述:

highlighter- Python

Description: # 描述服务 
After: # 描述服务类别 
[Service] # 服务运行参数的设置 
Type=forking # 是后台运行的形式 
ExecStart # 为服务的具体运行命令 
ExecReload # 为重启命令 
ExecStop # 为停止命令 
LimitNOFILE=65536 # 打开文件数和进程数有限制,默认限制为1024,如果不设置,或者设置为LimitNOFILE=unlimited(不识别),则得到了1024
PrivateTmp=True # 表示给服务分配独立的临时空间 
#【注意】[Service]的启动、重启、停止命令全部要求使用绝对路径 
[Install] #运行级别下服务安装的相关设置,可设置为多用户,即系统运行级别为3

重载系统服务:systemctl daemon-reload

/usr/libexec/redis-shutdown

highlighter- Bash

#!/bin/bash
#
# Wrapper to close properly redis and sentinel
test x"$REDIS_DEBUG" != x && set -x

REDIS_CLI=/usr/local/bin/redis-cli

# Retrieve service name
SERVICE_NAME="$1"
if [ -z "$SERVICE_NAME" ]; then
   SERVICE_NAME=redis
fi

# Get the proper config file based on service name
CONFIG_FILE="/usr/local/redis/$SERVICE_NAME.conf"

# Use awk to retrieve host, port from config file
HOST=`awk '/^[[:blank:]]*bind/ { print $2 }' $CONFIG_FILE | tail -n1`
PORT=`awk '/^[[:blank:]]*port/ { print $2 }' $CONFIG_FILE | tail -n1`
PASS=`awk '/^[[:blank:]]*requirepass/ { print $2 }' $CONFIG_FILE | tail -n1`
SOCK=`awk '/^[[:blank:]]*unixsocket\s/ { print $2 }' $CONFIG_FILE | tail -n1`

# Just in case, use default host, port
HOST=${HOST:-127.0.0.1}
if [ "$SERVICE_NAME" = redis ]; then
    PORT=${PORT:-6379}
else
    PORT=${PORT:-26739}
fi

# Setup additional parameters
# e.g password-protected redis instances
[ -z "$PASS"  ] || ADDITIONAL_PARAMS="-a $PASS"

# shutdown the service properly
if [ -e "$SOCK" ] ; then
        $REDIS_CLI -s $SOCK $ADDITIONAL_PARAMS shutdown
else
        $REDIS_CLI -h $HOST -p $PORT $ADDITIONAL_PARAMS shutdown
fi

配置完就可以通过systemctl启停redis了

6)授权启动服务(所有节点)

highlighter- Bash

chmod +x /usr/libexec/redis-shutdown


useradd -s /sbin/nologin redis




mkdir /usr/local/redis ; cp $REDIS_HOME/redis.conf /usr/local/redis/ && chown -R redis:redis /usr/local/redis




mkdir -p /opt/software/redis-7.0.3/data && chown -R redis:redis /opt/software/redis-7.0.3/data




yum install -y bash-completion && source /etc/profile                 # 命令补全




systemctl daemon-reload




systemctl enable redis


7)配置(redis.conf)

修改linux内核参数

highlighter- Bash

# 临时生效
sysctl  -w  vm.overcommit_memory=1
# 永久生效
echo 'vm.overcommit_memory=1' >> /etc/sysctl.conf && sysctl -p
### 可选值:0,1,2。
# 0,:表示内核将检查是否有足够的可用内存供应用进程使用;如果有足够的可用内存,内存申请允许;否则,内存申请失败,并把错误返回给应用进程。
# 1:表示内核允许分配所有的物理内存,而不管当前的内存状态如何。
# 2: 表示内核允许分配超过所有物理内存和交换空间总和的内存。

2、slave1节点配置

修改配置如下: vi /usr/local/redis/redis.conf

highlighter- Bash

bind 192.168.182.111               # 监听ip,多个ip用空格分隔
daemonize yes               # 允许后台启动
logfile "/usr/local/redis/redis.log"                # 日志路径
dir /opt/software/redis-7.0.3/data                 # 数据库备份文件存放目录
#  replicaof用于追随某个节点的redis,被追随的节点为主节点,追随的为从节点。就是设置master节点
replicaof 192.168.182.110 6379
masterauth 123456               # slave连接master密码,master可省略
requirepass 123456              # 设置master连接密码,slave可省略
appendonly yes                  # 在/opt/software/redis-7.0.3/data目录生成appendonly.aof文件,将每一次写操作请求都追加到appendonly.aof 文件中

3、slave2节点配置

修改配置如下: vi /usr/local/redis/redis.conf

highlighter- Bash

bind 192.168.182.112               # 监听ip,多个ip用空格分隔
daemonize yes               # 允许后台启动
logfile "/usr/local/redis/redis.log"                # 日志路径
dir /opt/software/redis-7.0.3/data                 # 数据库备份文件存放目录
#  replicaof用于追随某个节点的redis,被追随的节点为主节点,追随的为从节点。就是设置master节点
replicaof 192.168.182.110 6379
masterauth 123456               # slave连接master密码,master可省略
requirepass 123456              # 设置master连接密码,slave可省略
appendonly yes                  # 在/opt/software/redis-7.0.3/data目录生成appendonly.aof文件,将每一次写操作请求都追加到appendonly.aof 文件中

8)启动Redis服务

highlighter- Lua

systemctl start redis
systemctl status redis

9)查看集群状态

highlighter- Bash

# 交互式
redis-cli -h 192.168.182.110 -a 123456
192.168.182.110:6379> info replication

交互式



redis-cli -h 192.168.182.110

192.168.182.110:6379> auth 123456

192.168.182.110:6379> info replication



非交互式



redis-cli -h 192.168.182.110 -a 123456 info replication


在这里Redis的主从模式就部署完了(一主两从)

【温馨提示】在slave节点上只能读,无法写入数据

三、Sentinel(哨兵)模式 部署

1)架构与简介

主从模式的弊端就是 不具备高可用性,当master挂掉以后,Redis将不能再对外提供写入操作,因此sentinel应运而生。

sentinel中文含义为哨兵,顾名思义,它的作用就是监控redis集群的运行状况,特点如下:

  • sentinel模式是建立在主从模式的基础上,如果只有一个Redis节点,sentinel就没有任何意义
  • 当master挂了以后,sentinel会在slave中选择一个做为master,并修改它们的配置文件,其他slave的配置文件也会被修改,比如slaveof属性会指向新的master
  • 当master重新启动后,它将不再是master而是做为slave接收新的master的同步数据
  • sentinel因为也是一个进程有挂掉的可能,所以sentinel也会启动多个形成一个sentinel集群
  • 多sentinel配置的时候,sentinel之间也会自动监控
  • 当主从模式配置密码时,sentinel也会同步将配置信息修改到配置文件中,不需要担心
  • 一个sentinel或sentinel集群可以管理多个主从Redis,多个sentinel也可以监控同一个redis
  • sentinel最好不要和Redis部署在同一台机器,不然Redis的服务器挂了以后,sentinel也挂了

工作机制:

  • 每个sentinel以每秒钟一次的频率向它所知的master,slave以及其他sentinel实例发送一个 PING 命令
  • 如果一个实例距离最后一次有效回复 PING 命令的时间超过 down-after-milliseconds 选项所指定的值, 则这个实例会被sentinel标记为主观下线。
  • 如果一个master被标记为主观下线,则正在监视这个master的所有sentinel要以每秒一次的频率确认master的确进入了主观下线状态
  • 当有足够数量的sentinel(大于等于配置文件指定的值)在指定的时间范围内确认master的确进入了主观下线状态, 则master会被标记为客观下线
  • 在一般情况下, 每个sentinel会以每 10 秒一次的频率向它已知的所有master,slave发送 INFO 命令
  • 当master被sentinel标记为客观下线时,sentinel向下线的master的所有slave发送 INFO 命令的频率会从 10 秒一次改为 1 秒一次
  • 若没有足够数量的sentinel同意master已经下线,master的客观下线状态就会被移除;若master重新向sentinel的 PING 命令返回有效回复,master的主观下线状态就会被移除

2)环境准备

IP主机名角色
local-168-182-110192.168.182.110master,sentinel
local-168-182-111192.168.182.111slave1,sentinel
local-168-182-112192.168.182.112slave2,sentinel
【温馨提示】 sentinel 最好跟redis部署在不同的机器上,sentinel 端口:26379

3)配置sentinel(所有节点)

【温馨提示】前面已经安装过了redis主从模式了,因为哨兵模式是基于主从模式的,所以redis的配置这里就省略了,直接修改sentinel配置文件,配置3个哨兵,每个哨兵的配置都是一样的。

highlighter- Bash

# 三个节点创建存储目录
mkdir /opt/software/redis-7.0.3/sentinel
mkdir /opt/software/redis-7.0.3/sentinel ; chown -R redis:redis /opt/software/redis-7.0.3/


cat >/usr/local/redis/sentinel.conf<

sentinel monitor mymaster 192.168.182.110 6379 2

sentinel auth-pass mymaster 123456



判断master主观下线时间,默认30s



sentinel down-after-milliseconds mymaster 30000

EOF


4)启动sentinel(所有节点)

highlighter- Bash

/usr/local/bin/redis-sentinel /usr/local/redis/sentinel.conf
netstat -tnlp|grep 26379

5)模拟故障测试

highlighter- Bash

# 停掉master
systemctl stop redis
redis-cli -h 192.168.182.111 -a 123456 info replication


 


发现master节点已经切换到其它节点了。再测试一下读写

highlighter- Bash

[root@local-168-182-110 redis-7.0.3]# redis-cli -h 192.168.182.112 -a 123456
Warning: Using a password with '-a' or '-u' option on the command line interface may not be safe.
192.168.182.112:6379> set k2 v2
OK

 新的master节点写能力也正常,接下来就是恢复故障了。

highlighter- CSS

redis-cli -h 192.168.182.112 -a 123456 info replication


 


发现就算原先的master节点恢复了,也不会切换到master角色,而是作为slave角色。

四、Cluster(集群)模式 部署

1)架构与简介

  • sentinel模式基本可以满足一般生产的需求,具备高可用性。但是当数据量过大到一台服务器存放不下的情况时,主从模式或sentinel模式就不能满足需求了,这个时候需要对存储的数据进行分片,将数据存储到多个Redis实例中。cluster模式的出现就是为了解决单机Redis容量有限的问题,将Redis的数据根据一定的规则分配到多台机器。
  • cluster可以说是sentinel+主从模式的结合体,通过cluster可以实现主从和master重选功能,所以如果配置两个副本三个分片的话,就需要六个Redis实例。因为Redis的数据是根据一定规则分配到cluster的不同机器的,当数据量过大时,可以新增机器进行扩容。
  • 使用集群,只需要将redis配置文件中的cluster-enable配置打开即可。每个集群中至少需要三个主数据库才能正常运行,新增节点非常方便。

cluster集群特点:

  • 多个redis节点网络互联,数据共享
  • 所有的节点都是一主一从(也可以是一主多从),其中从不提供服务,仅作为备用
  • 不支持同时处理多个key(如MSET/MGET),因为redis需要把key均匀分布在各个节点上,并发量很高的情况下同时创建key-value会降低性能并导致不可预测的行为
  • 支持在线增加、删除节点
  • 客户端可以连接任何一个主节点进行读写

2)环境准备

三台机器,分别开启三个redis服务,也就是每个节点就是一主两从模式

IP主机名端口节点
local-168-182-110192.168.182.1107001,7002,7003node1
local-168-182-111192.168.182.1117001,7002,7003node2
local-168-182-112192.168.182.1127001,7002,7003node3

3)修改配置(所有节点)

【温馨提示】这里是基于主从模式的配置修改,不是基于主从模式部署,哨兵模式是基于主从模式部署。

highlighter- Bash

# 创建存储目录
mkdir -p /opt/software/redis-7.0.3/cluster/redis_{7001..7003}
cp /usr/local/redis/redis.conf /usr/local/redis/cluster_redis_7001.conf
cp /usr/local/redis/redis.conf /usr/local/redis/cluster_redis_7002.conf
cp /usr/local/redis/redis.conf /usr/local/redis/cluster_redis_7003.conf


chown -R redis:redis /usr/local/redis ;chown -R redis:redis /opt/software/redis-7.0.3/cluster



修改配置文件/usr/local/redis/cluster_redis_7001.conf

highlighter- Bash

# 【注意】节点不一样,IP不一样,记得修改这个bind配置
bind 192.168.182.110
port 7001
daemonize yes
pidfile "/var/run/cluster_redis_7001.pid"
logfile "/usr/local/redis/cluster_redis_7001.log"
dir "/opt/software/redis-7.0.3/cluster/redis_7001"
#replicaof 192.168.182.110 6379
masterauth "123456"
requirepass "123456"
appendonly yes
# 开启集群模式
cluster-enabled yes
# 虽然此配置的名字叫"集群配置文件",但是此配置文件不能人工编辑,它是集群节点自动维护的文件,主要用于记录集群中有哪些节点、他们的状态以及一些持久化参数等,方便在重启时恢复这些状态。通常是在收到请求之后这个文件就会被更新。
cluster-config-file nodes_7001.conf
cluster-node-timeout 15000

修改配置文件/usr/local/redis/cluster_redis_7002.conf

highlighter- Bash

# 【注意】节点不一样,IP不一样,记得修改这个bind配置
bind 192.168.182.110
port 7002
daemonize yes
pidfile "/var/run/cluster_redis_7002.pid"
logfile "/usr/local/redis/cluster_redis_7002.log"
dir "/opt/software/redis-7.0.3/cluster/redis_7002"
#replicaof 192.168.182.110 6379
masterauth "123456"
requirepass "123456"
appendonly yes
# 配置yes则开启集群功能,此redis实例作为集群的一个节点,否则,它是一个普通的单一的redis实例。
cluster-enabled yes
# 虽然此配置的名字叫"集群配置文件",但是此配置文件不能人工编辑,它是集群节点自动维护的文件,主要用于记录集群中有哪些节点、他们的状态以及一些持久化参数等,方便在重启时恢复这些状态。通常是在收到请求之后这个文件就会被更新。
cluster-config-file nodes_7002.conf
cluster-node-timeout 15000

修改配置文件/usr/local/redis/cluster_redis_7003.conf

highlighter- Bash

# 【注意】节点不一样,IP不一样,记得修改这个bind配置
bind 192.168.182.110
port 7003
daemonize yes
pidfile "/var/run/cluster_redis_7003.pid"
logfile "/usr/local/redis/cluster_redis_7003.log"
dir "/opt/software/redis-7.0.3/cluster/redis_7003"
#replicaof 192.168.182.110 6379
masterauth "123456"
requirepass "123456"
appendonly yes
# 配置yes则开启集群功能,此redis实例作为集群的一个节点,否则,它是一个普通的单一的redis实例。
cluster-enabled yes
# 虽然此配置的名字叫"集群配置文件",但是此配置文件不能人工编辑,它是集群节点自动维护的文件,主要用于记录集群中有哪些节点、他们的状态以及一些持久化参数等,方便在重启时恢复这些状态。通常是在收到请求之后这个文件就会被更新。
cluster-config-file nodes_7003.conf
cluster-node-timeout 15000

其它两台机器配置与192.168.182.110一致,只是ip不同,此处省略

highlighter- Bash

# 将配置copy到另外两个节点
scp -r /usr/local/redis/cluster_redis_{7001..7003}.conf local-168-182-111:/usr/local/redis/
scp -r /usr/local/redis/cluster_redis_{7001..7003}.conf local-168-182-112:/usr/local/redis/

# 在node2上执行
sed -i 's/192.168.182.110/192.168.182.111/g' /usr/local/redis/cluster_redis_{7001..7003}.conf

# 在node3上执行
sed -i 's/192.168.182.110/192.168.182.112/g' /usr/local/redis/cluster_redis_{7001..7003}.conf

4)启动Redis服务(所有节点)

highlighter- Lua

redis-server /usr/local/redis/cluster_redis_7001.conf
netstat -tnlp|grep 7001
redis-server /usr/local/redis/cluster_redis_7002.conf
netstat -tnlp|grep 7002
redis-server /usr/local/redis/cluster_redis_7003.conf
netstat -tnlp|grep 7003
tail -f /usr/local/redis/cluster_redis_7001.log
tail -f /usr/local/redis/cluster_redis_7002.log
tail -f /usr/local/redis/cluster_redis_7003.log


 


 

5)创建集群

highlighter- Lua

# –cluster-replicas 2 : 表示集群的一个主节点有2个从节点,就是一主两从模式
redis-cli -a 123456 --cluster create \
192.168.182.110:7001 192.168.182.110:7002 192.168.182.110:7003 \
192.168.182.111:7001 192.168.182.111:7002 192.168.182.111:7003 \
192.168.182.112:7001 192.168.182.112:7002 192.168.182.112:7003 \
--cluster-replicas 2


会自动生成nodes.conf文件

highlighter-

ll /opt/software/redis-7.0.3/cluster/redis_{7001..7003}

6)集群操作

1、登录集群

highlighter- CSS

redis-cli -c -h 192.168.182.110 -p 7001
192.168.182.110:7001> auth 123456

2、查看集群信息

highlighter- CSS

redis-cli -c -h 192.168.182.129 -p 7001
192.168.182.110:7001> auth 123456
192.168.182.110:7001> CLUSTER INFO

3、列出节点信息

highlighter- CSS

redis-cli -c -h 192.168.182.129 -p 7001
192.168.182.110:7001> auth 123456
192.168.182.110:7001> CLUSTER INFO
192.168.182.110:7001> CLUSTER NODES

4、增加节点

node1上增加一节点

【1】配置

highlighter- Bash

# copy配置
cp /usr/local/redis/cluster_redis_7003.conf /usr/local/redis/cluster_redis_7004.conf
# 创建存储目录
mkdir /opt/software/redis-7.0.3/cluster/redis_7004

修改配置



vi /usr/local/redis/cluster_redis_7004.conf




bind 192.168.182.110

port 7004

daemonize yes

pidfile "/var/run/redis_7004.pid"

logfile "/usr/local/redis/cluster_redis_7004.log"

dir "/opt/software/redis-7.0.3/cluster/redis_7004"



replicaof 192.168.182.110 6379



masterauth "123456"

requirepass "123456"

appendonly yes

cluster-enabled yes

cluster-config-file nodes_7004.conf

cluster-node-timeout 15000



授权



chown -R redis:redis /usr/local/redis && chown -R redis:redis /opt/software/redis-7.0.3/cluster/redis_7004


【2】启动服务

highlighter- Bash

redis-server /usr/local/redis/cluster_redis_7004.conf
netstat -tnlp|grep :7004

【3】集群中增加节点

highlighter- Bash

[root@local-168-182-110 ~]# redis-cli -c -h 192.168.182.110 -p 7001
192.168.182.110:7001> auth 123456
# 添加节点
192.168.182.110:7001> CLUSTER MEET 192.168.182.110 7004
# 查看节点信息
192.168.182.110:7001> CLUSTER NODES


可以看到,新增的节点都是以master身份加入集群的

【4】更换节点身份

将新增的192.168.182.110:7004节点身份改为192.168.182.130:7001的slave

highlighter- Bash

redis-cli -c -h 192.168.182.110 -p 7004
192.168.182.110:7004> auth 123456
# 改变节点类型
192.168.182.110:7004> cluster replicate 0a9d68b75d529b611b4bae5753be602006fcef74
192.168.182.110:7004> CLUSTER NODES

5、删除节点

highlighter- Bash

redis-cli -c -h 192.168.182.110 -p 7001
192.168.182.110:7001> auth 123456
# 查看节点
192.168.182.110:7001> CLUSTER NODES
# 删除节点
192.168.182.110:7001> CLUSTER FORGET 378ef2a24fb4138496b8da85bb66143800b53686
# 检查节点信息
192.168.182.110:7001> CLUSTER NODES

6、保存配置

highlighter- Bash

redis-cli -c -h 192.168.182.110 -p 7001
192.168.182.110:7001> auth 123456
# 将节点的配置文件保存到硬盘里面
192.168.182.110:7001> CLUSTER SAVECONFIG


可以看到,之前删除的节点又恢复了,这是因为对应的配置文件没有删除,执行CLUSTER SAVECONFIG恢复。

7、模拟master节点挂掉

highlighter- Bash

netstat -lntp |grep :7001|awk '{print $NF}'|cut -d '/' -f 1|xargs kill -9
redis-cli -c -h 192.168.182.111 -p 7001 -a 123456 CLUSTER NODES


 


对应192.168.182.110:7001的一行可以看到,master fail,状态为disconnected;而对应192.168.182.110:7004的一行,slave已经变成master。

【故障恢复】重新启动192.168.182.110:7001节点

highlighter- CSS

redis-server /usr/local/redis/cluster_redis_7001.conf
redis-cli -c -h 192.168.182.111 -p 7001 -a 123456 CLUSTER NODES

 可以看到,192.168.182.110:7001节点启动后为slave节点,并且是192.168.182.110:7004的slave节点。即master节点如果挂掉,它的slave节点变为新master节点继续对外提供服务,而原来的master节点如果重启,则变为新master节点的slave节点。

【温馨提示】cluster不能选择db,只能默认db为0,所以select切库相当于是不能使用的。

五、简单使用

1)集群常用操作

1、查看集群信息

highlighter-

cluster info :打印集群的信息
cluster nodes :列出集群当前已知的所有节点( node),以及这些节点的相关信息。

2、节点操作

highlighter-

cluster meet   :将 ip 和 port 所指定的节点添加到集群当中,让它成为集群的一份子。
cluster forget  :从集群中移除 node_id 指定的节点。
cluster replicate  :将当前节点设置为 node_id 指定的节点的从节点。
cluster saveconfig :将节点的配置文件保存到硬盘里面。

3、槽(slot)

highlighter- CSS

cluster addslots  [slot ...] :将一个或多个槽( slot)指派( assign)给当前节点。
cluster delslots  [slot ...] :移除一个或多个槽对当前节点的指派。
cluster flushslots :移除指派给当前节点的所有槽,让当前节点变成一个没有指派任何槽的节点。
cluster setslot  node  :将槽 slot 指派给 node_id 指定的节点,如果槽已经指派给
另一个节点,那么先让另一个节点删除该槽>,然后再进行指派。
cluster setslot  migrating  :将本节点的槽 slot 迁移到 node_id 指定的节点中。
cluster setslot  importing  :从 node_id 指定的节点中导入槽 slot 到本节点。
cluster setslot  stable :取消对槽 slot 的导入( import)或者迁移( migrate)。

4、键

highlighter-

cluster keyslot  :计算键 key 应该被放置在哪个槽上。
cluster countkeysinslot  :返回槽 slot 目前包含的键值对数量。
cluster getkeysinslot   :返回 count 个 slot 槽中的键

2)redis 常用操作

1、字符串(String)

highlighter- Bash

# 登录master节点,slave节点是只读的
redis-cli -c -h 192.168.182.112 -p 7001
192.168.182.112:7001> auth 123456
OK
192.168.182.112:7001> set k1 v1
OK
192.168.182.112:7001> get k1
"v1"
# 获取多个值
192.168.182.112:7001> mget k1 k2 k3
1) "v1"
2) "v2"
3) "v3"

2、哈希(Hash)

Redis hash 是一个 string 类型的 field(字段) 和 value(值) 的映射表,hash 特别适合用于存储对象。

highlighter- Bash

# 登录master节点,slave节点是只读的
redis-cli -c -h 192.168.182.112 -p 7001
192.168.182.112:7001> auth 123456
# 设置
192.168.182.112:7001> HSET myhash field1 "foo"
(integer) 1
# 获取
192.168.182.112:7001> hget myhash field1
"foo"

3、列表(List)

Redis列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边)

highlighter- Bash

# 登录master节点,slave节点是只读的
redis-cli -c -h 192.168.182.112 -p 7001
192.168.182.112:7001> auth 123456
192.168.182.112:7001> LPUSH larr v1
(integer) 1
192.168.182.112:7001> LPUSH larr v2
(integer) 2
192.168.182.112:7001> LPUSH larr v3
(integer) 3
# 获取0到10个元素
192.168.182.112:7001> LRANGE larr  0 10
1) "v3"
2) "v2"
3) "v1"

4、集合(Set)

Redis 的 Set 是 String 类型的无序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据。

highlighter- Bash

# 登录master节点,slave节点是只读的
redis-cli -c -h 192.168.182.112 -p 7001
192.168.182.112:7001> auth 123456
192.168.182.112:7001> SADD myset "hello"
(integer) 1
192.168.182.112:7001> SADD myset "foo"
(integer) 1
# 已经存在,则不能添加该元素
192.168.182.112:7001> SADD myset "hello"
(integer) 0
# 获取
192.168.182.112:7001> SMEMBERS myset
1) "foo"
2) "hello"
192.168.182.112:6379>

5、 有序集合(sorted set)

Redis 有序集合和集合一样也是 string 类型元素的集合,且不允许重复的成员。不同的是每个元素都会关联一个 double 类型的分数。redis 正是通过分数来为集合中的成员进行从小到大的排序。有序集合的成员是唯一的,但分数(score)却可以重复

highlighter- Bash

# 登录master节点,slave节点是只读的
redis-cli -c -h 192.168.182.112 -p 7001
192.168.182.112:7001> auth 123456
192.168.182.112:7001> ZADD key1 1 redis
(integer) 1
192.168.182.112:7001> ZADD key1 2 mongodb
(integer) 1
192.168.182.112:7001> ZADD key1 3 mysql
(integer) 1
# 已经存在,不能添加
192.168.182.112:7001> ZADD key1  3 mysql
(integer) 0
# 已经存在,不能添加
192.168.182.112:7001> ZADD key1  4 mysql
(integer) 0
# 获取数据
192.168.182.112:7001> ZRANGE key1  0 10 WITHSCORES
1) "redis"
2) "1"
3) "mongodb"
4) "2"
5) "mysql"
6) "4"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/916480.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Excel】身份证号最后一位“X”怎么计算

大多数人身份证号最后一位都是数字&#xff0c;但有个别号码最后一位却是“X"。 如果你查百度&#xff0c;会得到如下答案&#xff1a; 当最后一位编码是10的时候&#xff0c;因为多出一位&#xff0c;所以就用X替换。 可大多数人不知道的是&#xff0c;这个10是怎么来的…

Isaac Sim+SKRL机器人并行强化学习

目录 Isaac Sim介绍 OmniIssacGymEnvs安装 SKRL安装与测试 基于UR5的机械臂Reach强化学习测评 机器人控制 OMNI GYM环境编写 SKRL运行文件 训练结果与速度对比 结果分析 运行体验与建议 Isaac Sim介绍 Isaac Sim是英伟达出的一款机器人仿真平台&#xff0c;适用于做机…

Leetcode 743 Network Delay Time

题意&#xff1a;给定n个节点的网络&#xff0c;以及节点之间传输的时间&#xff0c;求从节点k出发传输信息&#xff0c;最少需要多久&#xff0c;所有的节点都能够接收到信息 https://leetcode.com/problems/network-delay-time/description/ 题解&#xff1a;给定一个有向图…

[Android]相关属性功能的裁剪

1.将home界面的search bar 移除 /src/com/android/launcher3/graphics/LauncherPreviewRenderer.java // Add first page QSBif (FeatureFlags.QSB_ON_FIRST_SCREEN) {CellLayout firstScreen mWorkspaceScreens.get(FIRST_SCREEN_ID);View qsb mHomeElementInflater.infla…

qt中ctrl+鼠标左键无法进入

现象&#xff1a;qt中ctrl鼠标左键无法跳转部分函数&#xff0c;例如能跳到textEdit->toPlainText().&#xff0c;但无法跳转到toUtf8();但编译没有问题 排查1&#xff1a;我发现是交叉编译链的问题&#xff0c;使用linux自带就可以进&#xff0c;用ATK-I.MX6U就部分不能进…

【Android】View—基础知识,滑动,弹性滑动

基础知识 什么是View 在 Android 中&#xff0c;View 是用户界面&#xff08;UI&#xff09;中的基本组件&#xff0c;用于绘制图形和处理用户交互。所有的 UI 组件&#xff08;如按钮、文本框、图片等&#xff09;都是 View 的子类。可以说&#xff0c;View 是构建 Android …

2024年十大信创操作系统之中科红旗的红旗 Linux

随着全球信息技术格局的变化与国家信息安全日益重要&#xff0c;操作系统作为计算机硬件与软件之间的中介&#xff0c;逐渐成为了国家竞争力的核心领域之一。尤其是在我国提出自主创新、国产替代的战略背景下&#xff0c;信创&#xff08;信息技术应用创新&#xff09;产业的快…

QT开发笔记之小知识

QCoreApplication::aboutToQuit 主事件循环退出前发出的信号&#xff0c;是程序退出前等待QT线程退出回收资源的神器。 官方帮助文档 [signal] void QCoreApplication::aboutToQuit() 该信号在应用程序即将退出主事件循环时发出&#xff0c;例如&#xff1a;当事件循环级别降至…

Word VBA如何间隔选中多个(非连续)段落

实例需求&#xff1a;Word文档中的有多个段落&#xff0c;段落总数量不确定&#xff0c;现在需要先选中所有基数段落&#xff0c;即&#xff1a;段落1&#xff0c;段落3 … &#xff0c;然后一次性设置粗体格式。 也许有的读者会认为这个无厘头的需求&#xff0c;循环遍历遍历文…

PyAEDT:Ansys Electronics Desktop API 简介

在本文中&#xff0c;我将向您介绍 PyAEDT&#xff0c;这是一个 Python 库&#xff0c;旨在增强您对 Ansys Electronics Desktop 或 AEDT 的体验。PyAEDT 通过直接与 AEDT API 交互来简化脚本编写&#xff0c;从而允许在 Ansys 的电磁、热和机械求解器套件之间无缝集成。通过利…

软件著作权申请教程(超详细)(2024新版)软著申请

目录 一、注册账号与实名登记 二、材料准备 三、申请步骤 1.办理身份 2.软件申请信息 3.软件开发信息 4.软件功能与特点 5.填报完成 一、注册账号与实名登记 首先我们需要在官网里面注册一个账号&#xff0c;并且完成实名认证&#xff0c;一般是注册【个人】的身份。中…

HTTPS详解:加密机制、工作流程、CA证书与中间人攻击防护

文章目录 1. 前言1.1. 什么是HTTPS1.2. 什么是加密1.3. 常见的加密方式① 对称加密② 非对称加密 1.4. 数据摘要&#xff08;数据指纹&#xff09;① 实例&#xff1a;软件分发中的数据摘要 1.5.1 一个小问题 2. HTTPS 工作流程探究2.1. 方案1 - 只使用对称加密2.2. 方案2 - 只…

机器学习基础04

目录 1.朴素贝叶斯-分类 1.1贝叶斯分类理论 1.2条件概率 1.3全概率公式 1.4贝叶斯推断 1.5朴素贝叶斯推断 1.6拉普拉斯平滑系数 1.7API 2.决策树-分类 2.1决策树 2.2基于信息增益的决策树建立 2.2.1信息熵 2.2.2信息增益 2.2.3信息增益决策树建立步骤 2.3基于基…

【Python · PyTorch】卷积神经网络(基础概念)

【Python PyTorch】卷积神经网络 CNN&#xff08;基础概念&#xff09; 0. 生物学相似性1. 概念1.1 定义1.2 优势1.2.1 权重共享1.2.2 局部连接1.2.3 层次结构 1.3 结构1.4 数据预处理1.4.1 标签编码① One-Hot编码 / 独热编码② Word Embedding / 词嵌入 1.4.2 归一化① Min-…

ospf排错学习

排错步骤是 1、查看ospf的router-id是否相同 2、错误配置ospf发布路由 //典型错误 3、错误的ospf区域号 4、错误的被动接口设置 //接口设置为被动接口&#xff0c;不学习了 排错思路&#xff08;思科命令&#xff09…

AR眼镜方案_AR智能眼镜阵列/衍射光波导显示方案

在当今AR智能眼镜的发展中&#xff0c;显示和光学组件成为了技术攻坚的主要领域。由于这些组件的高制造难度和成本&#xff0c;其光学显示模块在整个设备的成本中约占40%。 采用光波导技术的AR眼镜显示方案&#xff0c;核心结构通常由光机、波导和耦合器组成。光机内的微型显示…

【Linux】多线程(中)

目录 一、线程互斥 1.1 互斥概念 1.2 互斥量mutex 1.3 互斥量相关API &#xff08;1&#xff09;初始化互斥量 &#xff08;2&#xff09;销毁互斥量 &#xff08;3&#xff09;互斥量加锁和解锁 1.4 互斥量原理 1.5 重入和线程安全 二、死锁 2.1 概念 2.2 造成死锁…

【优选算法 — 滑动窗口】水果成篮 找到字符串中所有字母异位词

水果成篮 水果成篮 题目描述 因为只有两个篮子&#xff0c;每个篮子装的水果种类相同&#xff0c;如果从 0 开始摘&#xff0c;则只能摘 0 和 1 两个种类 &#xff1b; 因为当我们在两个果篮都装有水果的情况下&#xff0c;如果再走到下一颗果树&#xff0c;果树的水果种类…

Ubuntu 的 ROS 操作系统 turtlebot3 gazebo仿真

引言 TurtleBot3 Gazebo仿真环境是一个非常强大的工具&#xff0c;能够帮助开发者在虚拟环境中测试和验证机器人算法。 Gazebo是一个开源的3D机器人仿真平台&#xff0c;它能支持物理引擎&#xff0c;允许机器人在虚拟环境中模拟和测试。结合ROS&#xff0c;它能提供一个完整的…

供应链管理、一件代发系统功能及源码分享 PHP+Mysql

随着电商行业的不断发展&#xff0c;传统的库存管理模式已经逐渐无法满足市场需求。越来越多的企业选择“一件代发”模式&#xff0c;即商家不需要自己储备商品库存&#xff0c;而是将订单直接转给供应商&#xff0c;由供应商直接进行发货。这种方式极大地降低了企业的运营成本…