C++提高编程-泛型编程


一、模板:

1.1.模板的概念:

  • 1.模板就是建立通用的模具,大大提高复用性
  • 2.例如生活中的模板:
    • 一寸照片模板:
      在这里插入图片描述
    • PPT模板:
      在这里插入图片描述
      在这里插入图片描述
  • 模板的特点:
    • 模板不可以直接使用,它只是一个框架
    • 模板的通用并不是万能的

二、泛型编程:

  • C++另一种编程思想称为 泛型编程 ,主要利用的技术就是模板
  • C++提供两种模板机制:函数模板类模板

三、函数模板

3.1.作用:

  • 建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。

3.2.应用:

a.语法

template<typename T>
函数声明或定义

解释:

  • template — 声明创建模板
  • typename — 表面其后面的符号是一种数据类型,可以用class代替
  • T — 通用的数据类型,名称可以替换,通常为大写字母

b.案例:

//交换整型函数
void swapInt(int &a, int &b) {
	int temp = a;
	a = b;
	b = temp;
}

//交换浮点型函数
void swapDouble(double &a, double &b) {
	double temp = a;
	a = b;
	b = temp;
}


//利用模板提供通用的交换函数
template<typename T>
void mySwap(T &a, T &b)
{
	T temp = a;
	a = b;
	b = temp;
}

void test01()
{
	int a = 10;
	int b = 20;
	
	//swapInt(a, b);

	//利用模板实现交换
	//1、自动类型推导
	mySwap(a, b);

	//2、显示指定类型
	mySwap<int>(a, b);

	cout << "a = " << a << endl;
	cout << "b = " << b << endl;

}

int main() {

	test01();

	system("pause");

	return 0;
}

3.4.总结:

  • 函数模板利用关键字 template
  • 使用函数模板有两种方式:自动类型推导显示指定类型
  • 模板的目的是为了提高复用性,将类型参数化

3.5.说明:

a.注意:

  • 1.自动类型推导,必须推导出一致的数据类型T,才可以使用
  • 2.模板必须要确定出T的数据类型,才可以使用
  • 3.在函数模板中template<typename T>的代码可以替换成template<class T>

b.示例:

//利用模板提供通用的交换函数
template<class T>
void mySwap(T &a, T &b)
{
	T temp = a;
	a = b;
	b = temp;
}


// 1、自动类型推导,必须推导出一致的数据类型T,才可以使用
void test01()
{
	int a = 10;
	int b = 20;
	char c = 'c';

	mySwap(a, b); // 正确,可以推导出一致的T
	//mySwap(a, c); // 错误,推导不出一致的T类型
}


// 2、模板必须要确定出T的数据类型,才可以使用
template<class T>
void func()
{
	cout << "func 调用" << endl;
}

void test02()
{
	//func(); //错误,模板不能独立使用,必须确定出T的类型
	func<int>(); //利用显示指定类型的方式,给T一个类型,才可以使用该模板
}

int main() {
	test01();
	test02();
	system("pause");
	return 0;
}

总结: 使用模板时必须确定出通用数据类型T,并且能够推导出一致的类型

3.6.案例

a.需求:

  • 1.利用函数模板封装一个排序的函数,可以对不同数据类型数组进行排序
  • 2.排序规则从大到小,排序算法为选择排序
  • 3.分别利用char数组int数组进行测试

b.示例:

//交换的函数模板
template<typename T>
void mySwap(T &a, T&b)
{
	T temp = a;
	a = b;
	b = temp;
}


template<class T> // 也可以替换成typename
//利用选择排序,进行对数组从大到小的排序
void mySort(T arr[], int len){
	for (int i = 0; i < len; i++){
		int max = i; //最大数的下标
		for (int j = i + 1; j < len; j++){
			if (arr[max] < arr[j]){
				max = j;//更新最大值下标
			}
		}
		
		if (max != i){ //如果最大数的下标不是i,交换两者
			mySwap(arr[max], arr[i]);
		}
	}
}


template<typename T>
void printArray(T arr[], int len) {

	for (int i = 0; i < len; i++) {
		cout << arr[i] << " ";
	}
	cout << endl;
}



void test01()
{
	//测试char数组
	char charArr[] = "bdcfeagh";
	int num = sizeof(charArr) / sizeof(char); //计算的是数组长度
	mySort(charArr, num);
	printArray(charArr, num);
}

void test02()
{
	//测试int数组
	int intArr[] = { 7, 5, 8, 1, 3, 9, 2, 4, 6 };
	int num = sizeof(intArr) / sizeof(int); //计算的是数组长度
	mySort(intArr, num);
	printArray(intArr, num);
}

int main() {
	test01();
	test02();
	system("pause");
	return 0;
}

总结:模板可以提高代码复用,需要熟练掌握

3.6.普通函数与函数模板对比:

a.区别

  • 1.普通函数调用时可以发生自动类型转换(隐式类型转换)
  • 2.函数模板调用时,如果利用自动类型推导,不会发生隐式类型转换
  • 3.在函数模板中,如果利用显示指定类型的方式,可以发生隐式类型转换

b.示例:

//普通函数
int myAdd01(int a, int b)
{
	return a + b;
}

//函数模板
template<class T>
T myAdd02(T a, T b)  
{
	return a + b;
}

//使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换
void test01()
{
	int a = 10;
	int b = 20;
	char c = 'c';
	
	cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型  'c' 对应 ASCII码 99

	//myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换

	myAdd02<int>(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:建议使用显示指定类型的方式,调用函数模板,因为可以自己确定通用类型T

3.7.普通函数与函数模板的调用规则:

a.调用规则:

  • 1.如果函数模板和普通函数都可以实现,优先调用普通函数
  • 2.可以通过空模板参数列表来强制调用函数模板
  • 3.函数模板也可以发生重载
  • 4.如果函数模板可以产生更好的匹配,优先调用函数模板

b.示例:

//普通函数与函数模板调用规则
void myPrint(int a, int b)
{
	cout << "调用的普通函数" << endl;
}

template<typename T>
void myPrint(T a, T b) 
{ 
	cout << "调用的模板" << endl;
}

template<typename T>
void myPrint(T a, T b, T c) 
{ 
	cout << "调用重载的模板" << endl; 
}

void test01()
{
	//1、如果函数模板和普通函数都可以实现,优先调用普通函数
	// 注意 如果告诉编译器  普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到
	int a = 10;
	int b = 20;
	myPrint(a, b); //调用普通函数

	//2、可以通过空模板参数列表来强制调用函数模板
	myPrint<>(a, b); //调用函数模板

	//3、函数模板也可以发生重载
	int c = 30;
	myPrint(a, b, c); //调用重载的函数模板

	//4、 如果函数模板可以产生更好的匹配,优先调用函数模板
	char c1 = 'a';
	char c2 = 'b';
	myPrint(c1, c2); //调用函数模板
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:既然提供了函数模板,最好就不要提供普通函数,否则容易出现二义性

3.8.模板的局限性

a.局限性:

  • 1.模板的通用性并不是万能的,如下两个局限:
	template<class T>
	void f(T a, T b)
	{ 
    	a = b;
    }

在上述代码中提供的赋值操作,如果传入的a和b是一个数组,就无法实现了

	template<class T>
	void f(T a, T b)
	{ 
    	if(a > b) { ... }
    }

在上述代码中,如果T的数据类型传入的是像Person这样的自定义数据类型,也无法正常运行

因此C++为了解决这种问题,提供模板的重载,可以为这些特定的类型提供具体化的模板

b.示例:

#include<iostream>
using namespace std;
#include <string>

class Person{
public:
	Person(string name, int age){
		this->m_Name = name;
		this->m_Age = age;
	}
	string m_Name;
	int m_Age;
};





//普通函数模板
template<class T>
bool myCompare(T &a, T &b){
	if (a == b){
		return true;
	}else{
		return false;
	}
}


//具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型
//具体化优先于常规模板
template<> bool myCompare(Person &p1, Person &p2){
	if ( p1.m_Name  == p2.m_Name && p1.m_Age == p2.m_Age){
		return true;
	}else{
		return false;
	}
}

void test01(){
	int a = 10;
	int b = 20;
	//内置数据类型可以直接使用通用的函数模板
	bool ret = myCompare(a, b);
	if (ret){
		cout << "a == b " << endl;
	}else{
		cout << "a != b " << endl;
	}
}

void test02(){
	Person p1("Tom", 10);
	Person p2("Tom", 10);
	
	//自定义数据类型,不会调用普通的函数模板
	//可以创建具体化的Person数据类型的模板,用于特殊处理这个类型
	bool ret = myCompare(p1, p2);
	if (ret){
		cout << "p1 == p2 " << endl;
	}else{
		cout << "p1 != p2 " << endl;
	}
}

int main() {
	test01();
	test02();
	system("pause");
	return 0;
}

总结:

  • 利用具体化的模板,可以解决自定义类型的通用化
  • 学习模板并不是为了写模板,而是在STL能够运用系统提供的模板

四、类模板

4.1.作用:

  • 建立一个通用类,类中的成员 数据类型可以不具体制定,用一个虚拟的类型来代表。

4.2.语法

a.语法:

template<typename T>

解释:**

  • template — 声明创建模板
  • typename — 表面其后面的符号是一种数据类型,可以用class代替
  • T — 通用的数据类型,名称可以替换,通常为大写字母

b.示例:

#include <string>
//类模板
template<class NameType, class AgeType> 
class Person{
	public:
		Person(NameType name, AgeType age){
			this->mName = name;
			this->mAge = age;
		}
		
		void showPerson(){
			cout << "name: " << this->mName << " age: " << this->mAge << endl;
		}
	
	public:
		NameType mName;
		AgeType mAge;
};

void test01(){
	// 指定NameType 为string类型,AgeType 为 int类型
	Person<string, int>P1("孙悟空", 999);
	P1.showPerson();
}

int main() {
	test01();
	system("pause");
	return 0;
}

总结:类模板和函数模板语法相似,在声明模板template后面加类,此类称为类模板

4.3.类模板与函数模板区别

a.区别:

  • 1.类模板没有自动类型推导的使用方式
  • 2.类模板在模板参数列表中可以有默认参数

b.示例:

#include <string>
//类模板
template<class NameType, class AgeType> 
class PersonA{
	public:
		Person(NameType name, AgeType age){
			this->mName = name;
			this->mAge = age;
		}
		void showPerson(){
			cout << "name: " << this->mName << " age: " << this->mAge << endl;
		}
		
	public:
		NameType mName;
		AgeType mAge;
};


//类模板
template<class NameType, class AgeType = int> 
class PersonB{
	public:
		Person(NameType name, AgeType age){
			this->mName = name;
			this->mAge = age;
		}
		void showPerson(){
			cout << "name: " << this->mName << " age: " << this->mAge << endl;
		}
		
	public:
		NameType mName;
		AgeType mAge;
};

//1、类模板没有自动类型推导的使用方式
void test01(){
	// Person p("孙悟空", 1000); // 错误 类模板使用时候,不可以用自动类型推导
	PersonA <string ,int>p("孙悟空", 1000); //必须使用显示指定类型的方式,使用类模板
	p.showPerson();
}

//2、类模板在模板参数列表中可以有默认参数
void test02(){
	PersonB <string> p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认参数
	p.showPerson();
}

int main() {
	test01();
	test02();
	system("pause");
	return 0;
}

4.4.类模板中成员函数创建时机

a.创建时机区别:

  • 1.类模板中成员函数和普通类中成员函数创建时机是有区别的
    • 普通类中的成员函数一开始就可以创建
    • 类模板中的成员函数在调用时才创建

b.示例:

class Person1{
	public:
		void showPerson1(){
			cout << "Person1 show" << endl;
		}
};

class Person2{
	public:
		void showPerson2(){
			cout << "Person2 show" << endl;
		}
};

template<class T>
class MyClass{
	public:
		T obj;
		//类模板中的成员函数,并不是一开始就创建的,而是在模板调用时再生成
		void fun1() { obj.showPerson1(); }
		void fun2() { obj.showPerson2(); }
};

void test01(){
	MyClass<Person1> m;
	m.fun1();
	//m.fun2();//编译会出错,说明函数调用才会去创建成员函数
}

int main() {
	test01();
	system("pause");
	return 0;
}

总结:类模板中的成员函数并不是一开始就创建的,在调用时才去创建

4.5.类模板对象做函数参数

学习目标:类模板实例化出的对象,向函数传参的方式

a.传入方式:

  • 1.指定传入的类型 — 直接显示对象的数据类型
  • 2.参数模板化 — 将对象中的参数变为模板进行传递
  • 3.整个类模板化 — 将这个对象类型 模板化进行传递

b.示例:

#include <string>
//类模板
template<class NameType, class AgeType = int> 
class Person{
	public:
		Person(NameType name, AgeType age){
			this->mName = name;
			this->mAge = age;
		}
		void showPerson(){
			cout << "name: " << this->mName << " age: " << this->mAge << endl;
		}
		
	public:
		NameType mName;
		AgeType mAge;
	};



//方式1、指定传入的类型
void printPerson1(Person<string, int> &p) {
	p.showPerson();
}
void test01(){
	Person <string, int >p("孙悟空", 100);
	printPerson1(p);
}




//方式2、参数模板化
template <class T1, class T2>
void printPerson2(Person<T1, T2>&p){
	p.showPerson();
	cout << "T1的类型为: " << typeid(T1).name() << endl;
	cout << "T2的类型为: " << typeid(T2).name() << endl;
}

void test02(){
	Person <string, int >p("猪八戒", 90);
	printPerson2(p);
}




//方式3、整个类模板化
template<class T>
void printPerson3(T &p){
	cout << "T的类型为: " << typeid(T).name() << endl;
	p.showPerson();

}
void test03()
{
	Person <string, int >p("唐僧", 30);
	printPerson3(p);
}

int main() {

	test01();
	test02();
	test03();

	system("pause");

	return 0;
}

总结:

  • 通过类模板创建的对象,可以有三种方式向函数中进行传参
  • 使用比较广泛是第一种:指定传入的类型

4.6.类模板与继承:

a.注意点:

  • 1.当子类继承的父类是一个类模板时,子类在声明的时候,要指定出父类中T的类型
  • 2.如果不指定,编译器无法给子类分配内存
  • 3.如果想灵活指定出父类中T的类型,子类也需变为类模板

b.示例:

template<class T>
class Base{
	T m;
};

//class Son:public Base  //错误,c++编译需要给子类分配内存,必须知道父类中T的类型才可以向下继承

//必须指定一个类型
class Son :public Base<int>{ 

};

void test01(){
	Son c;
}


//类模板继承类模板 ,可以用T2指定父类中的T类型
template<class T1, class T2>
class Son2 :public Base<T2>{
	public:
		Son2(){
			cout << typeid(T1).name() << endl;
			cout << typeid(T2).name() << endl;
		}
};



void test02()
{
	Son2<int, char> child1;
}



int main() {
	test01();
	test02();
	system("pause");
	return 0;
}

总结:如果父类是类模板,子类需要指定出父类中T的数据类型

4.8.类模板成员函数类外实现

学习目标:能够掌握类模板中的成员函数类外实现

a.示例:

#include <string>

//类模板中成员函数类外实现
template<class T1, class T2>
class Person {
	public:
		//成员函数类内声明
		Person(T1 name, T2 age);
		void showPerson();
	
	public:
		T1 m_Name;
		T2 m_Age;
};

//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {
	this->m_Name = name;
	this->m_Age = age;
}

//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {
	cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}

void test01()
{
	Person<string, int> p("Tom", 20);
	p.showPerson();
}

int main() {
	test01();
	system("pause");
	return 0;
}

总结:类模板中成员函数类外实现时,需要加上模板参数列表

4.9. 类模板分文件编写

学习目标:掌握类模板成员函数分文件编写产生的问题以及解决方式

a.问题:

  • 类模板中成员函数创建时机是在调用阶段,导致分文件编写时链接不到

b.解决:

  • 解决方式1:直接包含.cpp源文件
  • 解决方式2:将声明和实现写到同一个文件中,并更改后缀名为.hpp,hpp是约定的名称,并不是强制

c.示例:

person.hpp中代码:

#pragma once
#include <iostream>
using namespace std;
#include <string>

template<class T1, class T2>
class Person {
public:
	Person(T1 name, T2 age);
	void showPerson();
public:
	T1 m_Name;
	T2 m_Age;
};

//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {
	this->m_Name = name;
	this->m_Age = age;
}

//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {
	cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}
  • 2.类模板分文件编写.cpp中代码
#include<iostream>
using namespace std;

//#include "person.h"
#include "person.cpp" //解决方式1,包含cpp源文件

//解决方式2,将声明和实现写到一起,文件后缀名改为.hpp
#include "person.hpp"
void test01()
{
	Person<string, int> p("Tom", 10);
	p.showPerson();
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:主流的解决方式是第二种,将类模板成员函数写到一起,并将后缀名改为.hpp

4.10.类模板与友元

学习目标:

  • 掌握类模板配合友元函数的类内和类外实现
  • 全局函数类内实现 - 直接在类内声明友元即可
  • 全局函数类外实现 - 需要提前让编译器知道全局函数的存在

a.示例:

#include <string>

//2、全局函数配合友元  类外实现 - 先做函数模板声明,下方在做函数模板定义,在做友元
template<class T1, class T2> class Person;

//如果声明了函数模板,可以将实现写到后面,否则需要将实现体写到类的前面让编译器提前看到
//template<class T1, class T2> void printPerson2(Person<T1, T2> & p); 



template<class T1, class T2>
void printPerson2(Person<T1, T2> & p)
{
	cout << "类外实现 ---- 姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
}



template<class T1, class T2>
class Person
{
	//1、全局函数配合友元   类内实现
	friend void printPerson(Person<T1, T2> & p)
	{
		cout << "姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
	}


	//全局函数配合友元  类外实现
	friend void printPerson2<>(Person<T1, T2> & p);

public:

	Person(T1 name, T2 age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}


private:
	T1 m_Name;
	T2 m_Age;

};

//1、全局函数在类内实现
void test01()
{
	Person <string, int >p("Tom", 20);
	printPerson(p);
}


//2、全局函数在类外实现
void test02()
{
	Person <string, int >p("Jerry", 30);
	printPerson2(p);
}

int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}

总结:建议全局函数做类内实现,用法简单,而且编译器可以直接识别

4.11.类模板案例

a.案例描述:

  • 1.实现一个通用的数组类,要求如下:
  • 可以对内置数据类型以及自定义数据类型的数据进行存储
  • 将数组中的数据存储到堆区
  • 构造函数中可以传入数组的容量
  • 提供对应的拷贝构造函数以及operator=防止浅拷贝问题
  • 提供尾插法和尾删法对数组中的数据进行增加和删除
  • 可以通过下标的方式访问数组中的元素
  • 可以获取数组中当前元素个数和数组的容量

b.示例:

  • myArray.hpp中代码
#pragma once
#include <iostream>
using namespace std;

template<class T>
class MyArray
{
public:
    
	//构造函数
	MyArray(int capacity)
	{
		this->m_Capacity = capacity;
		this->m_Size = 0;
		pAddress = new T[this->m_Capacity];
	}

	//拷贝构造
	MyArray(const MyArray & arr)
	{
		this->m_Capacity = arr.m_Capacity;
		this->m_Size = arr.m_Size;
		this->pAddress = new T[this->m_Capacity];
		for (int i = 0; i < this->m_Size; i++)
		{
			//如果T为对象,而且还包含指针,必须需要重载 = 操作符,因为这个等号不是 构造 而是赋值,
			// 普通类型可以直接= 但是指针类型需要深拷贝
			this->pAddress[i] = arr.pAddress[i];
		}
	}

	//重载= 操作符  防止浅拷贝问题
	MyArray& operator=(const MyArray& myarray) {

		if (this->pAddress != NULL) {
			delete[] this->pAddress;
			this->m_Capacity = 0;
			this->m_Size = 0;
		}

		this->m_Capacity = myarray.m_Capacity;
		this->m_Size = myarray.m_Size;
		this->pAddress = new T[this->m_Capacity];
		for (int i = 0; i < this->m_Size; i++) {
			this->pAddress[i] = myarray[i];
		}
		return *this;
	}

	//重载[] 操作符  arr[0]
	T& operator [](int index)
	{
		return this->pAddress[index]; //不考虑越界,用户自己去处理
	}

	//尾插法
	void Push_back(const T & val)
	{
		if (this->m_Capacity == this->m_Size)
		{
			return;
		}
		this->pAddress[this->m_Size] = val;
		this->m_Size++;
	}

	//尾删法
	void Pop_back()
	{
		if (this->m_Size == 0)
		{
			return;
		}
		this->m_Size--;
	}

	//获取数组容量
	int getCapacity()
	{
		return this->m_Capacity;
	}

	//获取数组大小
	int	getSize()
	{
		return this->m_Size;
	}


	//析构
	~MyArray()
	{
		if (this->pAddress != NULL)
		{
			delete[] this->pAddress;
			this->pAddress = NULL;
			this->m_Capacity = 0;
			this->m_Size = 0;
		}
	}

private:
	T * pAddress;  //指向一个堆空间,这个空间存储真正的数据
	int m_Capacity; //容量
	int m_Size;   // 大小
};
  • 2.类模板案例—数组类封装.cpp中
#include "myArray.hpp"
#include <string>

void printIntArray(MyArray<int>& arr) {
	for (int i = 0; i < arr.getSize(); i++) {
		cout << arr[i] << " ";
	}
	cout << endl;
}

//测试内置数据类型
void test01()
{
	MyArray<int> array1(10);
	for (int i = 0; i < 10; i++)
	{
		array1.Push_back(i);
	}
	cout << "array1打印输出:" << endl;
	printIntArray(array1);
	cout << "array1的大小:" << array1.getSize() << endl;
	cout << "array1的容量:" << array1.getCapacity() << endl;

	cout << "--------------------------" << endl;

	MyArray<int> array2(array1);
	array2.Pop_back();
	cout << "array2打印输出:" << endl;
	printIntArray(array2);
	cout << "array2的大小:" << array2.getSize() << endl;
	cout << "array2的容量:" << array2.getCapacity() << endl;
}

//测试自定义数据类型
class Person {
public:
	Person() {} 
		Person(string name, int age) {
		this->m_Name = name;
		this->m_Age = age;
	}
public:
	string m_Name;
	int m_Age;
};

void printPersonArray(MyArray<Person>& personArr)
{
	for (int i = 0; i < personArr.getSize(); i++) {
		cout << "姓名:" << personArr[i].m_Name << " 年龄: " << personArr[i].m_Age << endl;
	}

}

void test02()
{
	//创建数组
	MyArray<Person> pArray(10);
	Person p1("孙悟空", 30);
	Person p2("韩信", 20);
	Person p3("妲己", 18);
	Person p4("王昭君", 15);
	Person p5("赵云", 24);

	//插入数据
	pArray.Push_back(p1);
	pArray.Push_back(p2);
	pArray.Push_back(p3);
	pArray.Push_back(p4);
	pArray.Push_back(p5);

	printPersonArray(pArray);

	cout << "pArray的大小:" << pArray.getSize() << endl;
	cout << "pArray的容量:" << pArray.getCapacity() << endl;

}

int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}

总结:

能够利用所学知识点实现通用的数组

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/915082.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

漫谈分布式唯一ID

文章目录 本系列前言UUIDDB自增主键Redis incr命令号段模式雪花算法 本系列 漫谈分布式唯一ID&#xff08;本文&#xff09;分布式唯一ID生成&#xff08;二&#xff09;&#xff1a;leaf分布式唯一ID生成&#xff08;三&#xff09;&#xff1a;uid-generator分布式唯一ID生成…

大语言模型LLMs在医学领域的最新进展总结

我是娜姐 迪娜学姐 &#xff0c;一个SCI医学期刊编辑&#xff0c;探索用AI工具提效论文写作和发表。 相比其他学科&#xff0c;医学AI&#xff0c;是发表学术成果最多的领域。 医学数据的多样性和复杂性&#xff08;包括文本、图像、基因组数据等&#xff09;&#xff0c;使得…

Vue 学习随笔系列十四 -- JavaScript巧妙用法

JavaScript巧妙用法 文章目录 JavaScript巧妙用法1、String.padStart 函数2、String.padEnd 函数3、tirm 函数3. Object.freeze 函数4. Object.fromEntries 函数5. Object.entries 函数6. Array.prototype.flat 函数 1、String.padStart 函数 在字符串前面进行填充 let temp …

【PGCCC】Postgresql 物理流复制

postgresql 提供了主从复制功能&#xff0c;有基于文件的拷贝和基于 tcp 流的数据传输两种方式。两种方式都是传输 wal 数据&#xff0c;前者是等待生成一个完整的wal文件后&#xff0c;才会触发传输&#xff0c;后者是实时传输的。可以看出来基于文件方式的延迟会比较高&#…

每日小练:Day2

1.乒乓球筐 题目链接&#xff1a;乒乓球筐__牛客网 题目描述&#xff1a; 这道题主要考察B盒是不是A盒的子集&#xff0c;我们可以通过哈希表来做 单哈希表 import java.util.Scanner;// 注意类名必须为 Main, 不要有任何 package xxx 信息 public class Main {public stat…

esp32学习:如何解决OV5640摄像头发热问题

我们在使用esp开发板过程中&#xff0c;连接ov2640摄像头时&#xff0c;非常正常&#xff0c;但连接ov5640摄像头时&#xff0c;会发现摄像头发烫&#xff0c;非常热&#xff0c;我们网上找解决方案&#xff0c;基本都是加散热片&#xff0c;没有根本解决问题。 前段时间&#…

JQuery封装的ajax

1. 注意&#xff1a; 首先要导jq的包json对象可以用 . 来调用keyjava只能给前端传页面&#xff0c;或者打印的内容String jsonstr json.toJSONString(resultJSON); //将对象转为JSON对象 Json格式和参数解释&#xff1a; <script src"js/jquery-1.10.2.min.js&quo…

【计算机网络】章节 知识点总结

一、计算机网络概述 1. 计算机网络向用户提供的两个最重要的功能&#xff1a;连通性、共享 2. 因特网发展的三个阶段&#xff1a; 第一阶段&#xff1a;从单个网络 ARPANET 向互联网发展的过程。1983 年 TCP/IP 协议成为 ARPANET 上的标准协议。第二阶段&#xff1a;建成三级…

Python+robotframework接口自动化测试实操(超详细总结)

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 目前我们需要考虑的是如何实现关键字驱动实现接口自动化输出&#xff0c;通过关键字的封装实现一定意义上的脚本与用例的脱离&#xff01; robot framework 的…

如何管理好自己的LabVIEW项目

在LabVIEW项目开发中&#xff0c;项目管理对于提高开发效率、确保项目质量、减少错误和维护成本至关重要。以下从项目规划、代码管理、测试与调试、版本控制、团队协作等方面&#xff0c;分享LabVIEW项目管理的体会。 ​ 1. 项目规划与需求分析 关键步骤&#xff1a; 需求分析…

【快速解决】kafka崩了,重启之后,想继续消费,怎么做?

目录 一、怎么寻找我们关心的主题在崩溃之前消费到了哪里&#xff1f; 1、一个问题&#xff1a; 2、查看消费者消费主题__consumer_offsets 3、一个重要前提&#xff1a;消费时要提交offset 二、指定 Offset 消费 假如遇到kafka崩了&#xff0c;你重启kafka之后&#xff0…

matlab建模入门指导

本文以水池中鸡蛋温度随时间的变化为切入点&#xff0c;对其进行数学建模并进行MATLAB求解&#xff0c;以更为通俗地进行数学建模问题入门指导。 一、问题简述 一个煮熟的鸡蛋有98摄氏度&#xff0c;将它放在18摄氏度的水池中&#xff0c;五分钟后鸡蛋的温度为38摄氏度&#x…

51单片机应用开发(进阶)---定时器应用(电子时钟)

实现目标 1、巩固定时器的配置流程&#xff1b; 2、掌握按键、数码管与定时器配合使用&#xff1b; 3、功能1&#xff1a;&#xff08;1&#xff09;简单显示时间。显示格式&#xff1a;88-88-88&#xff08;时-分-秒&#xff09; 4、功能2&#xff1a;&#xff08;1&#…

【外包】软件行业的原始形态,项目外包与独立开发者

【外包】互联网软件行业的原始形态&#xff0c;项目外包与独立开发者 本科期间写的一些东西&#xff0c;最近整理东西看到了&#xff0c;大致整理一下放出来&#xff0c;部分内容来自其他文章&#xff0c;均已引用。 文章目录 1、互联网软件行业的原始形态2、项目订单&#xff…

Python酷库之旅-第三方库Pandas(208)

目录 一、用法精讲 971、pandas.MultiIndex.set_levels方法 971-1、语法 971-2、参数 971-3、功能 971-4、返回值 971-5、说明 971-6、用法 971-6-1、数据准备 971-6-2、代码示例 971-6-3、结果输出 972、pandas.MultiIndex.from_arrays类方法 972-1、语法 972-2…

基于ConvNeXt的矿石种类识别

项目源码获取方式见文章末尾&#xff01; 600多个深度学习项目资料&#xff0c;快来加入社群一起学习吧。 《------往期经典推荐------》 项目名称 1.【基于CNN-RNN的影像报告生成】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【GAN模型实现二次元头像生成】 4.【CNN模型实现…

C++入门基础知识140—【关于C++ 类构造函数 析构函数】

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///C爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于C 类构造函数 & 析构函数的相关内容…

【Linux】-学习笔记03

第十一章-管理Linux软件包和进程 1.源码下载安装软件 1.1概念 源码文件&#xff1a;程序编写者使用C或C等语言编写的原始代码文本文件 源码文件使用.tar.gz或.tar.bz2打包成压缩文件 1.2特点 源码包可移植性好&#xff0c;与待安装软件的工作环境依赖性不大 由于有编译过程…

鸿蒙HarmonyOS(ArkUI基础篇大合集!)

文章目录 ArkUI&#xff08;方舟UI框架&#xff09;1.简介2.基本概念3.概述4.布局1.概述2.通用布局属性&#x1f388;1.盒子属性2.背景属性3.定位属性4.通用属性&#x1f388; 3.线性布局4.弹性布局(Flex)5.层叠布局(Stack) 5.组件1.使用文本1.文本显示(Text/Span)2.文本输入 (…

Prompt 工程

Prompt 工程 1. Prompt 工程简介 “预训练-提示预测”范式是近年来自然语言处理&#xff08;NLP&#xff09;领域的一个重要趋势&#xff0c;它与传统的“预训练-微调-预测”范式相比&#xff0c;提供了一种更为灵活和高效的模型应用方式。 Prompt工程是指在预训练的大型语言…