边缘计算与推理算力:智能时代的加速引擎

d3325a0478a87a179de14dea1973175c.jpeg

在数据量爆炸性增长的今天,边缘计算与推理算力正成为推动智能应用的关键力量。智能家居、自动驾驶、工业4.0等领域正在逐步从传统的云端计算转向边缘计算,而推理算力的加入,为边缘计算提供了更强的数据处理能力和实时决策能力。本文将探讨边缘计算与推理算力的关系、应用价值及其未来方向。


outside_default.png

边缘计算:从云端到边缘的转变

outside_default.png

边缘计算(Edge Computing)是一种将数据处理从云端转移到靠近数据源的设备上的方法。这种转变的动力源于设备对实时性、隐私保护和低成本的需求。随着物联网设备的大量普及,智能应用中的数据需求逐年增长,传统的云端处理在时延和隐私保护上显得力不从心。因此,边缘计算应运而生。

0cdcb88cc15f8a316fbc2a2cca430568.jpeg

在边缘计算的架构中,推理算力(Inference Power)是实现智能化的核心能力。推理算力指的是设备在本地执行人工智能(AI)模型的计算能力,特别是在推理过程中的表现。通过推理算力,边缘计算可以在本地对数据进行分析和决策,无需依赖于云端模型的支持。比如,配备AI芯片的智能摄像头可以在边缘完成对人脸、行为的识别,不必将图像数据上传云端。通过将AI模型的推理过程下沉到本地,边缘计算可以实现更快速、低成本的数据处理。


outside_default.png

应用场景:边缘推理的现实价值

outside_default.png

随着边缘计算和AI技术的不断发展,边缘推理在多个应用场景中展现出了强大的潜力,逐渐渗透到自动驾驶、工业自动化、智能零售等关键领域。相比传统的云计算,边缘推理通过在本地设备上处理数据,能够更快地响应、保护隐私、降低数据传输成本,正在改变各行业的运营方式和用户体验。

5838cea6c96e1e0c283bb956113f50e8.jpeg

自动驾驶与交通系统
自动驾驶车辆需要对周围环境进行实时感知与分析。推理算力在本地实现障碍物检测、路径规划等智能功能,提升了车辆的反应速度和行车安全性。同样,在智能交通系统中,边缘推理可以帮助信号灯、摄像头等设备做出本地化决策,缓解交通拥堵。

工业自动化

边缘推理在智能制造中具备了实时监控、缺陷检测和设备状态监测等功能,设备可以在不依赖云端的情况下实时检测产品质量,减少因故障带来的停工风险,提高生产效率。

智能零售体验
零售领域的边缘推理可对顾客行为进行实时分析,识别顾客兴趣商品、停留时长等,为零售商提供个性化推荐、动态调整库存等服务。这类应用正在重塑消费者的购物体验。


outside_default.png

边缘推理的技术挑战

outside_default.png

尽管边缘推理带来了诸多优势,但在实际应用中,技术实现依然面临着诸多挑战。这些问题直接关系到边缘推理的应用效果与效率,因此解决这些挑战成为边缘推理技术进步的关键。

00582c068566b27df35c0a9d9eb669e1.jpeg

模型压缩与高效推理

深度学习模型因其复杂的结构和庞大的参数量而具备强大的数据分析能力,但这也带来了计算量大、资源需求高的难题。边缘设备的计算能力通常较为有限,尤其是内存和处理速度,难以支持原始的深度学习模型。这时,模型压缩技术便成为了边缘推理的关键手段。模型剪枝、量化、知识蒸馏等技术可在保证模型精度的前提下,减少模型体积和计算需求,从而适配边缘设备的计算能力。

例如,剪枝技术通过删除模型中的冗余连接和参数来减少计算量;量化技术则可以将模型参数的浮点数精度降低到整数精度,显著减小模型所需的存储和计算资源。知识蒸馏则通过让小模型学习大模型的知识,实现性能和效率的平衡。这些模型压缩技术能够帮助深度学习模型适应边缘设备的资源限制,使得高效推理成为可能。然而,如何在模型压缩的过程中尽可能少地牺牲精度,依旧是一个技术难点,尤其是在实时性要求较高的应用场景中。

低功耗需求

边缘设备在功耗方面受到较大限制,特别是在偏远地区、无人驾驶车辆或移动设备等应用场景中,设备供电条件可能并不稳定。这就要求边缘推理过程中的每一步都需要尽可能节省电力,而低功耗设计则成为AI芯片优化的重点。当前,许多AI芯片厂商(如NVIDIA、Arm、Intel等)正通过硬件加速器、动态电源管理、智能休眠等技术,致力于开发低功耗、高效能的边缘设备。

例如,部分AI芯片通过异构设计整合了CPU、GPU、NPU等多个模块,可以针对不同计算任务自动调配资源,确保仅使用必要的算力完成推理任务,从而降低功耗。这类技术发展为边缘推理带来了更多的应用可能性,推动了高效、节能型边缘设备的普及。然而,在保证低功耗的同时满足边缘推理任务的实时性和准确性,依旧是低功耗设计中面临的难题之一。

异构计算架构的优化

边缘推理任务多样化,涉及简单规则检测到复杂深度学习推理。为了更高效地处理这些任务,许多边缘设备集成了CPU、GPU、NPU(神经网络处理单元)等异构架构。CPU适合通用计算,GPU擅长并行计算,而NPU专注于深度学习推理。关键在于合理分配任务到最合适的硬件单元,以实现资源的高效利用。

异构计算的优化难点主要在资源调度。边缘设备资源有限,不同设备的硬件组合也不尽相同,因此需设计通用的调度算法,智能分配任务以适应多样化架构。同时,不同硬件单元之间的通信开销也需控制,以降低延迟和能耗。

数据隐私与设备安全

边缘设备因数据本地处理而具备隐私优势,但其处于开放环境中,容易受到物理攻击和网络入侵,可能导致数据泄露或模型篡改。例如,公共场所的智能摄像头和交通信号设备若遭到攻击,可能带来严重安全隐患。

为确保数据处理的安全性,边缘设备制造商采取了多项安全措施,包括硬件加密、身份认证和防篡改设计。硬件加密可保护数据在存储和传输过程中的安全,身份认证确保设备身份的合法性,防篡改设计则通过物理防护避免外部破坏或恶意篡改。这些措施共同提升了边缘设备的整体安全性。

此外,边缘推理涉及的模型和数据的隐私保护也愈加受到重视。比如,联邦学习(Federated Learning)是一种数据隐私保护技术,它允许边缘设备在本地训练AI模型,将学习到的模型参数上传云端进行汇总,而无需共享具体数据,从而实现多设备间的协同学习和隐私保护。这一技术在医疗、金融等注重隐私的领域展现了巨大的潜力。

outside_default.png

未来趋势:边缘与云的协同共生

outside_default.png

边缘计算与云计算的结合正在塑造出一个全新的计算范式,这一范式强调的是资源和能力的最优分配,以适应不断变化的技术需求和应用场景。随着技术的不断演进,未来的智能应用将越来越依赖于边缘与云的协同共生,以达到更高效、更智能、更个性化的服务水平。

540048783c718ff54f37ebbc827ae4d0.jpeg

轻量化模型的普及

轻量化模型的发展是边缘计算广泛应用的关键。越来越多的轻量化AI模型如MobileNet和SqueezeNet,通过减少模型体积和计算量,使其在保持较高准确率的同时适配边缘设备的计算能力。这不仅让计算资源有限的设备能够运行AI应用,还显著降低了能耗,使得智能设备更环保和经济。

在智能家居和智能监控中,轻量化模型已广泛应用于智能音箱、安防摄像头等设备,支持本地语音识别、面部识别等复杂任务。这种方式加快了响应速度,同时提升了用户数据的安全性。

边缘云协同计算

随着边缘设备的普及,边缘与云端协同计算模式越来越重要。边缘设备负责实时数据处理和推理,云端则进行更复杂的全局分析。以智慧城市为例,边缘设备可即时优化交通流,而云端则进行更全面的城市数据分析,以支持长期规划和资源调配。这种模式不仅最大化了边缘和云端资源的利用,还灵活调整数据处理位置,提升系统性能。

私有化部署的边缘AI模型

在医疗、金融等隐私要求严格的行业,私有化边缘AI模型的应用越来越多。通过本地化部署,数据无需离开设备,确保敏感信息的安全。同时,定制化边缘AI模型能够满足特定业务需求,为企业带来高效、精准的数据处理和分析,增强其竞争力。随着技术成熟和隐私法规收紧,私有化部署将在更多高数据安全需求场景中得到应用。

outside_default.png

结语

outside_default.png

边缘计算与推理算力的结合,正在加速智能时代的到来。从低延迟的实时响应到隐私保护和成本控制,边缘推理成为满足现代智能应用需求的重要技术支撑。随着技术的不断进化,边缘推理的应用场景将进一步拓展,成为人类生活和工作的基础设施之一。

1428dc1b6af73a9178bbff8d9a632ec6.gif

如果您也对边缘AI感兴趣,诚挚邀请您参加今年12月14日在上海举办的第十届全球边缘计算大会!边缘5年,逐梦同行!线下参会一天,相当于在边缘计算社区学习一整年!

0231122d373770b8f30a339aef18d32a.jpeg

边缘五年,逐梦前行——第十届全球边缘计算大会强势回归!

重磅发布 | 2024边缘计算产业图谱,揭示行业未来新格局!

2024-10-31

4bcceceb30acf553dfb40f4447fe4452.jpeg

新趋势|工业AI正在转向——边缘人工智能(Edge AI)

2024-10-20

188b044b29df04cc7ad5eb65b7832d32.jpeg

干货丨《边缘算力蓝皮书》附下载

2024-10-10

3141889c56ca645cd96725e0eeaaf724.jpeg

推荐一本我们的书!绝版珍藏!🌟

2024-04-22

8a51c12ee7a30652204518423a4af404.jpeg

重磅来袭!“2024中国边缘计算企业20强”榜单发布!

2024-04-09

e6b934b6a03151aa99dfa577c8608dc5.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/914558.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究

摘要:本文探讨了完善适配视频号交易小程序的重要意义,重点阐述了开源 AI 智能名片 S2B2C 商城小程序在这一过程中的应用。通过分析其与直播间和社群的无缝衔接特点,以及满足新流量结构下基础设施需求的能力,为门店在视频号直播交易…

深度学习知识点2-SENet(Squeeze-and-Excitation Networks)

作者的动机:希望显式地建模特征通道之间的相互依赖关系。 具体方法:并未引入新的空间维度来进行特征通道间的融合,而是采用了一种全新的「特征重标定」策略。通过学习的方式来自动获取到每个特征通道的重要程度,然后依照这个重要…

vue2.x elementui 固定顶部、左侧菜单与面包屑,自适应 iframe 页面布局

vue elementui 固定顶部、左侧菜单与面包屑,自适应 iframe 页面布局 疑问点:iframe无法高度100%,如果写了100%就会有滚动条,所以只写了99.5% 【效果图】 路由示例 const routes [{title: Index,path: /,name: "Index"…

在配置环境变量之后使用Maven报错 : mvn : 无法将“mvn”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。

最近,我在 Windows 系统上安装和配置 Apache Maven 时遇到了一些问题,想在此记录下我的解决历程,希望对遇到类似问题的朋友有所帮助。 问题描述 我下载了 Maven 并按照常规步骤配置了相关的环境变量。然而,在 PowerShell 中输入…

java数据结构与算法:栈

栈 1、栈的基本概念2、Java模拟简单的顺序栈实现3、增强功能版栈4、利用栈实现字符串逆序5、利用栈判断分隔符是否匹配6、总结 1、栈的基本概念 **栈(英语:stack)**又称为堆栈或堆叠,栈作为一种数据结构,是一种只能在…

【Linux篇】面试——用户和组、文件类型、权限、进程

目录 一、权限管理 1. 用户和组 (1)相关概念 (2)用户命令 ① useradd(添加新的用户账号) ② userdel(删除帐号) ③ usermod(修改帐号) ④ passwd&…

java/SpingBoot

后端:使用MyBatis与数据库相连。 下载安装apache-maven 配置apache-maven管理工具

基于yolov8、yolov5的番茄成熟度检测识别系统(含UI界面、训练好的模型、Python代码、数据集)

摘要:番茄成熟度检测在农业生产及质量控制中起着至关重要的作用,不仅能帮助农民及时采摘成熟的番茄,还为自动化农业监测提供了可靠的数据支撑。本文介绍了一款基于YOLOv8、YOLOv5等深度学习框架的番茄成熟度检测模型,该模型使用了…

从“大吼”到“轻触”,防爆手机如何改变危险油气环境通信?

众所周知,在加油站用手机打电话是被明令禁止的,这是因为手机内部会产生静电或射频火花,可能点燃空气中的油气混合物,导致爆炸或火灾。那么加油站的工作人员如何交流呢?以前他们靠吼,现在有了防爆手机&#…

PICO+Unity MR空间锚点

官方链接:空间锚点 | PICO 开发者平台 注意:该功能只能打包成APK在PICO 4 Ultra上真机运行,无法通过串流或PICO developer center在PC上运行。使用之前要开启视频透视。 在 Inspector 窗口中的 PXR_Manager (Script) 面板上,勾选…

OneRestore: A Universal Restoration Framework for Composite Degradation 论文阅读笔记

这是武汉大学一作单位的一篇发表在ECCV2024上的论文,文章代码开源,文章首页图如下所示,做混合图像干扰去除,还能分别去除,看起来很牛逼。文章是少见的做混合图像干扰去除的,不过可惜只包含了3种degradation…

2.vue编写APP组件

二、编写APP组件 2.1基本语法 1&#xff09;先把src里的默认文件删掉 2&#xff09;创建main.ts和App.vue这两个文件 <!--App.vue--><!-- 组件结构 --> <template><div class"app"><h1>Hello Vue</h1></div> </temp…

工业相机选取

1.相机分类&#xff1a; 1.1 在相机曝光方式中&#xff0c;全局曝光和卷帘曝光是两种主流技术。CCD相机通常采用全局曝光方式&#xff0c;而CMOS相机则可能采用卷帘曝光。 面阵相机与全局曝光关联与区别 关联&#xff1a;面阵相机可以使用全局曝光作为曝光方式&#xff0c;但…

进入未来城:第五周游戏指南

欢迎来到 Alpha 第 4 季第五周&#xff01; 走进霓虹闪烁的未来城街道&#xff0c;这是一座科技至上的赛博朋克大都市。鳞次栉比的摩天大楼熠熠生辉&#xff0c;拥挤的街道下则是阴森恐怖的地下世界。在这里&#xff0c;像激光鹰队长这样的超级战士正在巡逻&#xff0c;而 Ago…

C++ 错题本 MAC环境下 unique_lock try_lock_for函数爆红问题

下方是一个非常简单的&#xff0c;尝试使用unique_lock去尝试加锁的示例代码&#xff0c;在调用try_lock_for函数的时候爆红。这个函数本来就是按照编辑器提示点出来的&#xff0c;不可能没有这个方法 &#xff0c;比较奇怪。 报错如图所示&#xff1a; 运行的时候编译器报错…

华为大咖说 | 浅谈智能运维技术

本文分享自华为云社区&#xff1a;华为大咖说 | 浅谈智能运维技术-云社区-华为云 本文作者&#xff1a;李文轩 &#xff08; 华为智能运维专家 &#xff09; 全文约2695字&#xff0c;阅读约需8分钟 在大数据、人工智能等新兴技术的加持下&#xff0c;智能运维&#xff08;AI…

ollama+springboot ai+vue+elementUI整合

1. 下载安装ollama (1) 官网下载地址&#xff1a;https://github.com/ollama/ollama 这里以window版本为主&#xff0c;下载链接为&#xff1a;https://ollama.com/download/OllamaSetup.exe。 安装完毕后&#xff0c;桌面小图标有一个小图标&#xff0c;表示已安装成功&…

python数据写入excel文件

主要思路&#xff1a;数据 转DataFrame后写入excel文件 一、数据格式为字典形式1 k e &#xff0c; v [‘1’, ‘e’, 0.83, 437, 0.6, 0.8, 0.9, ‘好’] 1、这种方法使用了 from_dict 方法&#xff0c;指定了 orient‘index’ 表示使用字典的键作为行索引&#xff0c;然…

借助 Pause 容器调试 Pod

借助 Pause 容器调试 Pod 在 K8S 中&#xff0c;Pod 是最核心、最基础的资源对象&#xff0c;也是 Kubernetes 中调度最小单元。在介绍 Pause 容器之前需要先说明下 Pod 与容器的关系来理解为什么需要 Pause 容器来帮助调试 1. Pod 与 容器的关系 Pod 是一个抽象的逻辑概念&…

为何数据库推荐将IPv4地址存储为32位整数而非字符串?

目录 一、IPv4地址在数据库中的存储方式&#xff1f; 二、IPv4地址的存储方式比较 &#xff08;一&#xff09;字符串存储 vs 整数存储 &#xff08;二&#xff09;IPv4地址"192.168.1.8"说明 三、数据库推荐32位整数存储方式原理 四、存储方式对系统性能的影响…