计算机毕业设计Python+图神经网络考研院校推荐系统 考研分数线预测 考研推荐系统 考研爬虫 考研大数据 Hadoop 大数据毕设 机器学习 深度学习

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍文档

  • 项目概述

考研(研究生入学考试)是许多大学毕业生追求深造的一种途径。为了帮助考生更好地选择适合自己的研究生专业和院校,开发一个考研推荐系统可以为考生提供个性化的建议。该项目旨在通过数据分析和可视化技术,为考生提供基于数据的研究生专业和院校推荐。

通过数据分析和可视化,为考生提供具有个性化的研究生专业和院校推荐服务,帮助考生更好地选择适合自己的研究生方向。

该项目涉及数据处理、统计分析和可视化等技术,需要结合数据库管理、数据清洗、数据分析工具和可视化库进行开发实现。

  • 大数据分析、挖掘与可视化开发环境

    本项目采用Python语言及第三方库进行大数据分析、挖掘,包括训练模型的构建、后端开发环境、使用的第三方库和模型评估等方面。

  1. 软件开发环境:PyCharm、Navicat、MySQL

2.第三方库包

django==2.2.1
django-simpleui==2.1
djangorestframework==3.9.1
pandas
requests
Beautifulsoup4
pyecharts

  • 数据采集

本项目爬虫由两个爬虫同时组成,并可以并行爬取数据。

其中一个爬虫用于采集研究生院校的基本信息,包括学校名称、地理位置、专业设置等。另一个爬虫用于采集历年考研数据,包括报考人数、录取人数、专业录取分数线等。爬虫可以通过网络请求和HTML解析的方式获取所需数据,并将数据保存到本地csv文件或数据库中。

四、数据准备(含数据清洗、补全、整合、转换等)

在数据准备阶段,对采集到的数据进行清洗、补全、整合和转换等处理操作,以确保数据的质量和一致性。这包括处理缺失值、异常值、重复值等,对数据进行格式转换和标准化,以及将不同来源的数据整合到一个统一的数据集中。项目中所爬取的最新考研录取人数存在未知,且爬取下来的字段为-字符串,故将其修改为0.

  • 数据分析处理与训练模型的构建

在数据分析方面,我们分析了院校收藏Top10和院校评分Top10。统计了院校数量、双一流院校数量、自划线院校数量排名前十的省份。对专业报录比、学校报录比、学校报名前十做了统计分析。

在基于学校评分和收藏的模型构建阶段,我们将利用学生对不同学校的评分和收藏数据来构建推荐模型。这些评分和收藏数据可以反映学生对学校的偏好和兴趣。

  • 模型评估

数据准备:

收集学生对不同学校的评分和收藏数据。

对数据进行清洗和预处理,处理缺失值、异常值等。

特征工程:

根据评分和收藏数据,提取相关的特征,如学校评分、收藏次数等。

进行特征选择和转换,以提取对模型训练有用的特征。

模型评估:

基于准备好的特征和数据集,使用自定义算法构建推荐模型。

将数据集分为训练集和测试集,并评估模型的性能和准确性。

根据评估结果,对模型进行调整和改进,以提高推荐准确性和用户满意度。

模型优化:

可以尝试不同的机器学习算法、模型参数和特征组合,以优化模型表现。

进行模型调优和参数调整,以提高推荐结果的准确性和个性化程度。

七、数据可视化

数据可视化是将数据分析结果以直观、易于理解的图表、图形等形式展示的过程。在这一阶段,可以使用数据可视化技术,如绘制柱状图、折线图、散点图等,来展示分析结果和模型预测的信息。通过交互式界面和图表,用户可以根据自身需求进行筛选和选择,从而更好地理解和利用数据分析结果。

本项目使用柱状图分析了院校收藏和评分前十,饼状图统计了院校总数量、双一流院校数量、自划线院校数量前十的省份。最好,通过柱状图分析了每个院校及专业报录比前十情况,可以得出哪些院校或者哪些专业竞争比较激烈。

运行截图

核心算法代码解释

预测考研分数线的算法可以基于历史数据,使用线性回归模型进行简单的预测。以下是一个使用Python和scikit-learn库实现考研分数线预测的示例代码。假设我们有一个CSV文件score_data.csv,其中包含历年的年份和对应的考研分数线。

首先,确保你已经安装了scikit-learnpandas库。如果没有安装,可以使用以下命令进行安装:

pip install scikit-learn pandas

以下是预测考研分数线的Python代码:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt

# 读取数据
data = pd.read_csv('score_data.csv')

# 假设CSV文件有两列:'Year' 和 'Score'
X = data[['Year']].values  # 特征矩阵,只包含年份
y = data['Score'].values   # 目标变量,包含考研分数线

# 划分训练集和测试集(这里为了简单起见,全部数据用于训练)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建线性回归模型
model = LinearRegression()

# 训练模型
model.fit(X_train, y_train)

# 预测测试集
y_pred = model.predict(X_test)

# 输出测试集的真实值和预测值
print("真实值:", y_test)
print("预测值:", y_pred)

# 可视化结果
plt.scatter(X, y, color='blue', label='真实数据')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='预测线')
plt.xlabel('年份')
plt.ylabel('考研分数线')
plt.title('考研分数线预测')
plt.legend()
plt.show()

# 预测未来某年的分数线(例如2024年)
future_year = np.array([[2024]])
predicted_score = model.predict(future_year)
print(f"预测的2024年考研分数线为: {predicted_score[0]:.2f}")

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/914128.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

virtualBox部署minikube+istio

环境准备 virtualBox安装 直接官网下载后安装即可,网上也有详细教程。镜像使用的centos7。 链接(不保证还可用):http://big.dxiazaicc.com/bigfile/100/virtualbox_v6.1.26_downcc.com.zip?auth_key1730185635-pWBtV8LynsxPD0-0-…

一文了解Android本地广播

在 Android 开发中,本地广播(Local Broadcast)是一种轻量级的通信机制,主要用于在同一应用进程内的不同组件之间传递消息,而无需通过系统的全局广播机制。这种方法既可以提高安全性(因为广播仅在应用内传播…

CoD-MIL: 基于诊断链提示的多实例学习用于全切片图像分类|文献速递-基于深度学习的病灶分割与数据超分辨率

Title 题目 CoD-MIL: Chain-of-Diagnosis Prompting Multiple Instance Learning for Whole Slide Image Classification CoD-MIL: 基于诊断链提示的多实例学习用于全切片图像分类 01 文献速递介绍 病理检查被广泛视为肿瘤诊断的金标准,因为它为治疗决策和患者…

Socket 和 WebSocket 的应用

Socket(套接字)是计算机网络中的一个抽象层,它允许应用程序通过网络进行通信。套接字用于跨网络的不同主机上的应用程序之间的数据交换。在互联网中,套接字通常基于 TCP(传输控制协议)或 UDP(用…

uniapp发布到微信小程序,提示接口未配置在app.json文件中

使用uniapp打包上传微信小程序发布,在提交审核时提示 “接口未配置在app.json文件中” 如下图所示 解决方法:在manifest.json文件中打开源码视图,添加 requiredPrivateInfos 字段键入所需要的接口(数组)

Golang | Leetcode Golang题解之第557题反转字符串中的单词III

题目&#xff1a; 题解&#xff1a; func reverseWords(s string) string {length : len(s)ret : []byte{}for i : 0; i < length; {start : ifor i < length && s[i] ! {i}for p : start; p < i; p {ret append(ret, s[start i - 1 - p])}for i < le…

[产品管理-58]:安索夫矩阵矩阵帮助创业者确定研发出来的产品在市场中定位策略

目录 一、提出背景 二、核心思想与结构 三、应用背景与领域 四、实践案例 安索夫矩阵&#xff08;Ansoff Matrix&#xff09;&#xff0c;也被称为产品/市场方格或成长矢量矩阵&#xff0c;其应用背景可以从以下几个方面进行详细阐述&#xff1a; 一、提出背景 安索夫矩阵…

使用 Vue 配合豆包MarsCode 实现“小恐龙酷跑“小游戏

作者&#xff1a;BLACK595 “小恐龙酷跑”&#xff0c;它是一款有趣的离线游戏&#xff0c;是Google给Chrome浏览器加的一个有趣的彩蛋。当我们浏览器断网时一只像素小恐龙便会出来提示断网。许多人认为这只是一个可爱的小图标&#xff0c; 但当我们按下空格后&#xff0c;小恐…

运行ts文件出错及解决办法

运行ts文件出错及解决办法 TypeError [ERR_UNKNOWN_FILE_EXTENSION]: Unknown file extension “.ts” 这个错误是因为 ts-node 无法直接处理 TypeScript 文件作为 ES 模块。你可以尝试以下解决方案&#xff1a; 解决方案 1: 使用 --loader ts-node/esm 选项 如果你使用的是 …

Unity中IK动画与布偶死亡动画切换的实现

在Unity游戏开发中&#xff0c;Inverse Kinematics&#xff08;IK&#xff09;是创建逼真角色动画的强大工具。同时&#xff0c;能够在适当的时候切换到布偶物理状态来实现死亡动画等效果&#xff0c;可以极大地增强游戏的视觉体验。本文将详细介绍如何在Unity中利用IK实现常规…

JS爬虫实战之TikTok_Shop验证码

TikTok_Shop验证码逆向 逆向前准备思路1- 确认接口2- 参数确认3- 获取轨迹参数4- 构建请求5- 结果展示 结语 逆向前准备 首先我们得有TK Shop账号&#xff0c;否则是无法抓取到数据的。拥有账号后&#xff0c;我们直接进入登录。 TikTok Shop 登录页面 思路 逆向步骤一般分为…

易泊车牌识别相机:4S 店的智能之选

在当今数字化时代&#xff0c;科技的进步不断为各个行业带来更高效、便捷的解决方案。对于 4S 店来说&#xff0c;易泊车牌识别相机的出现&#xff0c;无疑为其运营管理带来了全新的变革。 一、易泊车牌识别相机的强大功能 易泊车牌识别相机以其卓越的性能和精准的识别能力&…

音频数据的处理

前言 在研究android音频架&#xff0c;音频驱动等的时候&#xff0c;就有涉及到dump音频数据debug&#xff0c;重采样&#xff0c;downmixer&#xff0c;位深转换的处理&#xff0c;那这些的操作原理以及相关算法是如何实现的呢&#xff1f; 带着这个问题&#xff0c;开始探讨…

【前端】手写一个简单的分页器

1. 前言 分页器基本上是任何网站必须要有的一个组件&#xff0c;为什么需要分页器&#xff0c;当后台传入了大量的数据&#xff0c;那么在前端拿到数据&#xff0c;如果直接展示很有可能或造成卡顿&#xff0c;同时消耗过多的内存&#xff0c;给用户带来的浏览效果就不好。所以…

如何在Linux中使用Cron定时执行SQL任务

文章目录 前言一、方案分析二、使用步骤1.准备脚本2.crontab脚本执行 踩坑 前言 演示数据需要每天更新监控数据&#xff0c;不想手动执行&#xff0c;想到以下解决方案 navicat 创建定时任务java服务定时执行linux crontab 定时执行sql脚本 一、方案分析 我选择了第三个方案…

超好用shell脚本NuShell mac安装

利用管道控制任意系统 Nu 可以在 Linux、macOS 和 Windows 上运行。一次学习&#xff0c;处处可用。 一切皆数据 Nu 管道使用结构化数据&#xff0c;你可以用同样的方式安全地选择&#xff0c;过滤和排序。停止解析字符串&#xff0c;开始解决问题。 强大的插件系统 具备强…

过程自动化的新黄金标准:Ethernet-APL

| Ethernet-APL为终客户和设备制造商带来益处 Ethernet-APL&#xff08;Advanced Physical Layer&#xff0c;高级物理层&#xff09;是一种两线制以太网物理层&#xff0c;它使用了由IEEE 802.3cg所定义的10BASE-T1L&#xff0c;并采用了新的工艺制造规定&#xff0c;因此构成…

扫雷游戏代码分享(c基础)

hi , I am 36. 代码来之不易&#x1f44d;&#x1f44d;&#x1f44d; 创建两个.c 一个.h 1&#xff1a;test.c #include"game.h"void game() {//创建数组char mine[ROWS][COLS] { 0 };char show[ROWS][COLS] { 0 };char temp[ROWS][COLS] { 0 };//初始化数…

OceanBase 应用实践:如何处理数据空洞,降低存储空间

问题描述 某保险行业客户的核心系统&#xff0c;从Oracle 迁移到OceanBase之后&#xff0c;发现数据存储空间出现膨胀问题&#xff0c;数据空间 datasize9857715.48M&#xff0c;实际存储占用空间17790702.00M。根据 required_mb - data_mb 值判断&#xff0c;数据空洞较为严重…

算法学习第一弹——C++基础

早上好啊&#xff0c;大佬们。来看看咱们这回学点啥&#xff0c;在前不久刚出完C语言写的PTA中L1的题目&#xff0c;想必大家都不过瘾&#xff0c;感觉那些题都不过如此&#xff0c;所以&#xff0c;为了我们能更好的去处理更难的题目&#xff0c;小白兔决定奋发图强&#xff0…