2023年高教社杯数学建模思路 - 案例:FPTree-频繁模式树算法

文章目录

    • 算法介绍
    • FP树表示法
    • 构建FP树
    • 实现代码
  • 建模资料

## 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

实现代码

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        fset = frozenset(trans)
        retDict.setdefault(fset, 0)
        retDict[fset] += 1
    return retDict

class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}

    def inc(self, numOccur):
        self.count += numOccur

    def disp(self, ind=1):
        print('   ' * ind, self.name, ' ', self.count)
        for child in self.children.values():
            child.disp(ind + 1)


def createTree(dataSet, minSup=1):
    headerTable = {}
    #此一次遍历数据集, 记录每个数据项的支持度
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + 1

    #根据最小支持度过滤
    lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))
    for k in lessThanMinsup: del(headerTable[k])

    freqItemSet = set(headerTable.keys())
    #如果所有数据都不满足最小支持度,返回None, None
    if len(freqItemSet) == 0:
        return None, None

    for k in headerTable:
        headerTable[k] = [headerTable[k], None]

    retTree = treeNode('φ', 1, None)
    #第二次遍历数据集,构建fp-tree
    for tranSet, count in dataSet.items():
        #根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度
        localD = {}
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]

        if len(localD) > 0:
            #根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] desc
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]
            updateTree(orderedItems, retTree, headerTable, count)
    return retTree, headerTable


def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:  # check if orderedItems[0] in retTree.children
        inTree.children[items[0]].inc(count)  # incrament count
    else:  # add items[0] to inTree.children
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:  # update header table
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])

    if len(items) > 1:  # call updateTree() with remaining ordered items
        updateTree(items[1:], inTree.children[items[0]], headerTable, count)


def updateHeader(nodeToTest, targetNode):  # this version does not use recursion
    while (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode

simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/91409.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【python】Leetcode(primer-dict-list)

文章目录 260. 只出现一次的数字 III&#xff08;字典 / 位运算&#xff09;136. 只出现一次的数字&#xff08;字典&#xff09;137. 只出现一次的数字 II&#xff08;字典&#xff09;169. 求众数&#xff08;字典&#xff09;229. 求众数 II&#xff08;字典&#xff09;200…

蓝蓝设计-UI设计公司案例-HMI列车监控系统界面设计解决方案

2013年&#xff0c;为加拿大庞巴迪(Bombardier)设计列车监控系统界面设计。 2015-至今&#xff0c;为中车集团旗下若干公司提供HMI列车监控系统界面设计,综合考虑中车特点、城轨车、动车组的不同需求以及HMI硬键屏和触摸 屏的不同操作方式&#xff0c;重构框架设计、交互设计、…

五度易链最新“产业大数据服务解决方案”亮相,打造数据引擎,构建智慧产业

快来五度易链官网 点击网址【http://www.wdsk.net/】 看看我们都发布了哪些新功能!!! 自2015年布局产业大数据服务行业以来&#xff0c;“五度易链”作为全国产业大数据服务行业先锋企业&#xff0c;以“让数据引领决策&#xff0c;以智慧驾驭未来”为愿景&#xff0c;肩负“打…

PROFIBUS主站转MODBUS TCP网关

1.产品功能 YC-DPM-TCP网关在Profibus总线侧实现主站功能&#xff0c;在以太网侧实现ModbusTcp服务器功能。可将Profibus DP从站接入到ModbusTcp网络&#xff1b;通过增加DP/PA耦合器&#xff0c;也可将Profibus PA从站接入ModbusTcp网络。YC-DPM-TCP网关最多支持125个Profibu…

电商项目part07 订单系统的设计与海量数据处理

订单重复下单问题&#xff08;幂等&#xff09; 用户在点击“提交订单”的按钮时&#xff0c;不小心点了两下&#xff0c;那么浏览器就会向服务端连续发送两条创建订单的请求。这样肯定是不行的 解决办法是,让订单服务具备幂等性。什么是幂等性&#xff1f;幂等操作的特点是&a…

网关认证的技术方案

我们认证授权使用springsecurity 和oauth2技术尽心实现具体实现流程见第五章文档&#xff0c;这里就是记录一下我们的技术方案 这是最开始的技术方案&#xff0c;我们通过认证为服务获取令牌然后使用令牌访问微服务&#xff0c;微服务解析令牌即可。但是缺点就是每个微服务都要…

如何构建多域名HTTPS代理服务器转发

在当今互联网时代&#xff0c;安全可靠的网络访问是至关重要的。本文将介绍如何使用SNI Routing技术来构建多域名HTTPS代理服务器转发&#xff0c;轻松实现多域名的安全访问和数据传输。 SNI代表"Server Name Indication"&#xff0c;是TLS协议的扩展&#xff0c;用于…

打怪升级之从零开始的网络协议

序言 三个多月过去了&#xff0c;我又来写博客了&#xff0c;这一次从零开始学习网络协议。 总的来说&#xff0c;计算机网络很像现实生活中的快递网络&#xff0c;其最核心的目标&#xff0c;就是把一个包裹&#xff08;信息&#xff09;从A点发送到B点去。下面是一些共同的…

【Unity】【Amplify Shader Editor】ASE入门系列教程第一课 遮罩

新建材质 &#xff08;不受光照材质&#xff09; 贴图&#xff1a;快捷键T 命名&#xff1a; UV采样节点&#xff1a;快捷键U 可以调节主纹理的密度与偏移 添加UV流动节点&#xff1a; 创建二维向量&#xff1a;快捷键 2 遮罩&#xff1a;同上 设置shader材质的模板设置 添加主…

解决无法远程连接MySQL服务的问题

① 设置MySQL中root用户的权限&#xff1a; [rootnginx-dev etc]# mysql -uroot -pRoot123 mysql> use mysql; mysql> GRANT ALL PRIVILEGES ON *.* TO root% IDENTIFIED BY Root123 WITH GRANT OPTION; mysql> select host,user,authentication_string from user; -…

项目总结知识点记录(二)

1.拦截器实现验证用户是否登录&#xff1a; 拦截器类&#xff1a;实现HandlerInterception package com.yx.interceptor;import org.springframework.web.servlet.HandlerInterceptor; import org.springframework.web.servlet.ModelAndView;import javax.servlet.http.HttpS…

react-sortable-hoc 拖拽列表上oncick事件失效

const SortableItem SortableElement(({value, onChangePayment}) > {const onClickItem () > {// todo}return (<View className"-item" onClick{onClickItem}>xxxxxxx</View>) })问题&#xff1a;onClick 无效 解决&#xff1a;添加distance

VMware ESXi 7.0 优化VMFSL磁盘占用与系统存储大小

文章目录 VMware ESXi 7.0 优化VMFSL磁盘占用与系统存储大小引言创建ESXi7.0可启动 U 盘结果检查VMware ESXi 7.0 优化VMFSL磁盘占用与系统存储大小 引言 本文讲述了在 J1900平台上安装ESXi7.0时减少 VMFSL 分区占用的说明, 通常这来说些主机内置的磁盘空间非常小, 采用默认安…

bh004- Blazor hybrid / Maui 使用 BootstrapBlazor UI 库快速教程

1. 建立工程 bh004_BootstrapBlazorUI 源码 2. 添加 nuget 包 <PackageReference Include"BootstrapBlazor" Version"7.*" /> <PackageReference Include"BootstrapBlazor.FontAwesome" Version"7.*" />3. 添加样式表文…

stm32之7.位带操作---volatile---优化等级+按键控制

源码--- #define PAin(n) (*(volatile uint32_t *)(0x42000000 (GPIOA_BASE0x10-0x40000000)*32 (n)*4)) #define PEin(n) (*(volatile uint32_t *)(0x42000000 (GPIOE_BASE0x10-0x40000000)*32 (n)*4)) #define PEout(n) (*(volatile uint32_t *)(0x420…

Kubernetes(K8S)简介

Kubernetes (K8S) 是什么 它是一个为 容器化 应用提供集群部署和管理的开源工具&#xff0c;由 Google 开发。Kubernetes 这个名字源于希腊语&#xff0c;意为“舵手”或“飞行员”。k8s 这个缩写是因为 k 和 s 之间有八个字符的关系。 Google 在 2014 年开源了 Kubernetes 项…

飞书小程序开发

1.tt.showModal后跳转页面 跳转路径要为绝对路径&#xff0c;相对路径跳转无响应。 2.手机息屏后将不再进入onload()生命周期&#xff0c;直接进入onshow()生命周期。 onLoad()在页面初始化的时候触发&#xff0c;一个页面只调用一次。 onShow()在切入前台时就会触发&#x…

[matlab]matlab配置mingw64编译器

第一步&#xff1a;下载官方绿色版本mingw64编译器然后解压放到一个非中文空格路径下面 比如我mingw64-win是我随便改的文件名&#xff0c;然后添加环境变量&#xff0c;选择用户或者系统环境变量添加下面的变量 变量名&#xff1a; MW_MINGW64_LOC 变量值&#xff1a;自己的m…

1.linux的常用命令

目录 一、Linux入门 二、Linux文件系统目录 三、Linux的vi和vim的使用 四、Linux的关机、重启、注销 四、Linux的用户管理 五、Linux的运行级别 六、Linux的文件目录指令 七、Linux的时间日期指令 八、Linux的压缩和解压类指令 九、Linux的搜索查找指令 ​​​​​​…

2023国赛数学建模思路 - 案例:随机森林

文章目录 1 什么是随机森林&#xff1f;2 随机深林构造流程3 随机森林的优缺点3.1 优点3.2 缺点 4 随机深林算法实现 建模资料 ## 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 什么是随机森林&#xff…