2023国赛数学建模思路 - 案例:随机森林

文章目录

    • 1 什么是随机森林?
    • 2 随机深林构造流程
    • 3 随机森林的优缺点
      • 3.1 优点
      • 3.2 缺点
    • 4 随机深林算法实现
  • 建模资料

## 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 什么是随机森林?

随机森林属于 集成学习 中的 Bagging(Bootstrap AGgregation 的简称) 方法。如果用图来表示他们之间的关系如下:

在这里插入图片描述
决策树 – Decision Tree

在这里插入图片描述
在解释随机森林前,需要先提一下决策树。决策树是一种很简单的算法,他的解释性强,也符合人类的直观思维。这是一种基于if-then-else规则的有监督学习算法,上面的图片可以直观的表达决策树的逻辑。

随机森林 – Random Forest | RF

在这里插入图片描述
随机森林是由很多决策树构成的,不同决策树之间没有关联。

当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。

2 随机深林构造流程

在这里插入图片描述

    1. 一个样本容量为N的样本,有放回的抽取N次,每次抽取1个,最终形成了N个样本。这选择好了的N个样本用来训练一个决策树,作为决策树根节点处的样本。
    1. 当每个样本有M个属性时,在决策树的每个节点需要分裂时,随机从这M个属性中选取出m个属性,满足条件m << M。然后从这m个属性中采用某种策略(比如说信息增益)来选择1个属性作为该节点的分裂属性。
    1. 决策树形成过程中每个节点都要按照步骤2来分裂(很容易理解,如果下一次该节点选出来的那一个属性是刚刚其父节点分裂时用过的属性,则该节点已经达到了叶子节点,无须继续分裂了)。一直到不能够再分裂为止。注意整个决策树形成过程中没有进行剪枝。
    1. 按照步骤1~3建立大量的决策树,这样就构成了随机森林了。

3 随机森林的优缺点

3.1 优点

  • 它可以出来很高维度(特征很多)的数据,并且不用降维,无需做特征选择
  • 它可以判断特征的重要程度
  • 可以判断出不同特征之间的相互影响
  • 不容易过拟合
  • 训练速度比较快,容易做成并行方法
  • 实现起来比较简单
  • 对于不平衡的数据集来说,它可以平衡误差。
  • 如果有很大一部分的特征遗失,仍可以维持准确度。

3.2 缺点

  • 随机森林已经被证明在某些噪音较大的分类或回归问题上会过拟合。
  • 对于有不同取值的属性的数据,取值划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的

4 随机深林算法实现

数据集:https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/

import csv
from random import seed
from random import randrange
from math import sqrt


def loadCSV(filename):#加载数据,一行行的存入列表
    dataSet = []
    with open(filename, 'r') as file:
        csvReader = csv.reader(file)
        for line in csvReader:
            dataSet.append(line)
    return dataSet

# 除了标签列,其他列都转换为float类型
def column_to_float(dataSet):
    featLen = len(dataSet[0]) - 1
    for data in dataSet:
        for column in range(featLen):
            data[column] = float(data[column].strip())

# 将数据集随机分成N块,方便交叉验证,其中一块是测试集,其他四块是训练集
def spiltDataSet(dataSet, n_folds):
    fold_size = int(len(dataSet) / n_folds)
    dataSet_copy = list(dataSet)
    dataSet_spilt = []
    for i in range(n_folds):
        fold = []
        while len(fold) < fold_size:  # 这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立
            index = randrange(len(dataSet_copy))
            fold.append(dataSet_copy.pop(index))  # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
        dataSet_spilt.append(fold)
    return dataSet_spilt

# 构造数据子集
def get_subsample(dataSet, ratio):
    subdataSet = []
    lenSubdata = round(len(dataSet) * ratio)#返回浮点数
    while len(subdataSet) < lenSubdata:
        index = randrange(len(dataSet) - 1)
        subdataSet.append(dataSet[index])
    # print len(subdataSet)
    return subdataSet

# 分割数据集
def data_spilt(dataSet, index, value):
    left = []
    right = []
    for row in dataSet:
        if row[index] < value:
            left.append(row)
        else:
            right.append(row)
    return left, right

# 计算分割代价
def spilt_loss(left, right, class_values):
    loss = 0.0
    for class_value in class_values:
        left_size = len(left)
        if left_size != 0:  # 防止除数为零
            prop = [row[-1] for row in left].count(class_value) / float(left_size)
            loss += (prop * (1.0 - prop))
        right_size = len(right)
        if right_size != 0:
            prop = [row[-1] for row in right].count(class_value) / float(right_size)
            loss += (prop * (1.0 - prop))
    return loss

# 选取任意的n个特征,在这n个特征中,选取分割时的最优特征
def get_best_spilt(dataSet, n_features):
    features = []
    class_values = list(set(row[-1] for row in dataSet))
    b_index, b_value, b_loss, b_left, b_right = 999, 999, 999, None, None
    while len(features) < n_features:
        index = randrange(len(dataSet[0]) - 1)
        if index not in features:
            features.append(index)
    # print 'features:',features
    for index in features:#找到列的最适合做节点的索引,(损失最小)
        for row in dataSet:
            left, right = data_spilt(dataSet, index, row[index])#以它为节点的,左右分支
            loss = spilt_loss(left, right, class_values)
            if loss < b_loss:#寻找最小分割代价
                b_index, b_value, b_loss, b_left, b_right = index, row[index], loss, left, right
    # print b_loss
    # print type(b_index)
    return {'index': b_index, 'value': b_value, 'left': b_left, 'right': b_right}

# 决定输出标签
def decide_label(data):
    output = [row[-1] for row in data]
    return max(set(output), key=output.count)


# 子分割,不断地构建叶节点的过程对对对
def sub_spilt(root, n_features, max_depth, min_size, depth):
    left = root['left']
    # print left
    right = root['right']
    del (root['left'])
    del (root['right'])
    # print depth
    if not left or not right:
        root['left'] = root['right'] = decide_label(left + right)
        # print 'testing'
        return
    if depth > max_depth:
        root['left'] = decide_label(left)
        root['right'] = decide_label(right)
        return
    if len(left) < min_size:
        root['left'] = decide_label(left)
    else:
        root['left'] = get_best_spilt(left, n_features)
        # print 'testing_left'
        sub_spilt(root['left'], n_features, max_depth, min_size, depth + 1)
    if len(right) < min_size:
        root['right'] = decide_label(right)
    else:
        root['right'] = get_best_spilt(right, n_features)
        # print 'testing_right'
        sub_spilt(root['right'], n_features, max_depth, min_size, depth + 1)

        # 构造决策树
def build_tree(dataSet, n_features, max_depth, min_size):
    root = get_best_spilt(dataSet, n_features)
    sub_spilt(root, n_features, max_depth, min_size, 1)
    return root
# 预测测试集结果
def predict(tree, row):
    predictions = []
    if row[tree['index']] < tree['value']:
        if isinstance(tree['left'], dict):
            return predict(tree['left'], row)
        else:
            return tree['left']
    else:
        if isinstance(tree['right'], dict):
            return predict(tree['right'], row)
        else:
            return tree['right']
            # predictions=set(predictions)
def bagging_predict(trees, row):
    predictions = [predict(tree, row) for tree in trees]
    return max(set(predictions), key=predictions.count)
# 创建随机森林
def random_forest(train, test, ratio, n_feature, max_depth, min_size, n_trees):
    trees = []
    for i in range(n_trees):
        train = get_subsample(train, ratio)#从切割的数据集中选取子集
        tree = build_tree(train, n_features, max_depth, min_size)
        # print 'tree %d: '%i,tree
        trees.append(tree)
    # predict_values = [predict(trees,row) for row in test]
    predict_values = [bagging_predict(trees, row) for row in test]
    return predict_values
# 计算准确率
def accuracy(predict_values, actual):
    correct = 0
    for i in range(len(actual)):
        if actual[i] == predict_values[i]:
            correct += 1
    return correct / float(len(actual))


if __name__ == '__main__':
    seed(1) 
    dataSet = loadCSV('sonar-all-data.csv')
    column_to_float(dataSet)#dataSet
    n_folds = 5
    max_depth = 15
    min_size = 1
    ratio = 1.0
    # n_features=sqrt(len(dataSet)-1)
    n_features = 15
    n_trees = 10
    folds = spiltDataSet(dataSet, n_folds)#先是切割数据集
    scores = []
    for fold in folds:
        train_set = folds[
                    :]  # 此处不能简单地用train_set=folds,这样用属于引用,那么当train_set的值改变的时候,folds的值也会改变,所以要用复制的形式。(L[:])能够复制序列,D.copy() 能够复制字典,list能够生成拷贝 list(L)
        train_set.remove(fold)#选好训练集
        # print len(folds)
        train_set = sum(train_set, [])  # 将多个fold列表组合成一个train_set列表
        # print len(train_set)
        test_set = []
        for row in fold:
            row_copy = list(row)
            row_copy[-1] = None
            test_set.append(row_copy)
            # for row in test_set:
            # print row[-1]
        actual = [row[-1] for row in fold]
        predict_values = random_forest(train_set, test_set, ratio, n_features, max_depth, min_size, n_trees)
        accur = accuracy(predict_values, actual)
        scores.append(accur)
    print ('Trees is %d' % n_trees)
    print ('scores:%s' % scores)
    print ('mean score:%s' % (sum(scores) / float(len(scores))))

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/91382.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

最新本地大模型进展#Chinese-LLaMA-2支持16k长上下文

‍‍ Hi&#xff0c;今天为大家介绍最新的本地中文语言模型进展。 [2023/08/25] Chinese-LLaMA-2发布了新的更新&#xff1a; 长上下文模型Chinese-LLaMA-2-7B-16K和Chinese-LLaMA-2-13B-16K&#xff0c;支持16K上下文&#xff0c;并可通过NTK方法进一步扩展至24K。 这意味着在…

基于OpenCV的迷宫路径查找

附上代码&#xff1a; import cv2 import numpy as np# 读取图像 img cv2.imread("img_3.png") thres_min 150 # 二值化最小阈值if not img is None:# 二值化处理ret, img cv2.threshold(img, thres_min, 255, cv2.THRESH_BINARY)cv2.imshow("img_thres&qu…

数据结构——布隆计算器

文章目录 1.什么是布隆过滤器&#xff1f;2.布隆过滤器的原理介绍3.布隆过滤器使用场景4.通过 Java 编程手动实现布隆过滤器5.利用Google开源的 Guava中自带的布隆过滤器6.Redis 中的布隆过滤器6.1介绍6.2使用Docker安装6.3常用命令一览6.4实际使用 1.什么是布隆过滤器&#xf…

【python】jupyter notebook导出pdf和pdf不显示中文问题

文章目录 写在前面1. 使用jupyter notebook导出pdf1.1 安装Pandoc1.2 安装MiKTex1.3 示例导出pdf 2. 中文显示问题2.1 显示中文问题示例2.2 解决办法1&#xff1a;修改tex2.3 解决办法2&#xff1a;修改内置文件 写在前面 使用jupyter notebook导出pdf时&#xff0c;出现了一些…

用python从零开始做一个最简单的小说爬虫带GUI界面(3/3)

目录 上一章内容 前言 出现的一些问题 requests包爬取小说的不便之处 利用aiohttp包来异步爬取小说 介绍 代码 main.py test_1.py test_3.py 代码大致讲解 注意 系列总结 上一章内容 用python从零开始做一个最简单的小说爬虫带GUI界面&#xff08;2/3&#xff09;_…

自定义loadbalance实现feignclient的自定义路由

自定义loadbalance实现feignclient的自定义路由 项目背景 服务A有多个同事同时开发&#xff0c;每个同事都在dev或者test环境发布自己的代码&#xff0c;注册到注册中心有好几个(本文nacos为例)&#xff0c;这时候调用feign可能会导致请求到不同分支的服务上面&#xff0c;会…

《华为认证》6to4自动隧道

实验需求&#xff1a; 在NE1和NE3之间使用tunnel 口创建6to4自动隧道&#xff0c;实现PC1和PC2互访。 步骤1:配置ipv4地址&#xff0c;如图所示&#xff1a; 步骤2&#xff1a;配置NE1和NE3的ipv4路由&#xff0c;是两端的ipv4网络能够互访 R1: ip route-static 0.0.0.0 0…

大数据(二)大数据行业相关统计数据

大数据&#xff08;二&#xff09;大数据行业相关统计数据 目录 一、大数据相关的各种资讯 二、转载自网络的大数据统计数据 2.1、国家大数据政策 2.2、产业结构分析 2.3、应用结构分析 2.4、数据中心 2.5、云计算 一、大数据相关的各种资讯 1. 据IDC预测&#xff0…

C语言练习题Day1

从今天开始分享C语言的练习题&#xff0c;每天都分享&#xff0c;差不多持续16天&#xff0c;看完对C语言的理解可能更进一步&#xff0c;让我们开始今天的分享吧&#xff01; 题目一 执行下面的代码&#xff0c;输出结果是&#xff08;&#xff09; int x5,y7; void swap()…

理解图傅里叶变换和图卷积

图神经网络&#xff08;GNN&#xff09;代表了一类强大的深度神经网络架构。在一个日益互联的世界里&#xff0c;因为信息的联通性&#xff0c;大部分的信息可以被建模为图。例如&#xff0c;化合物中的原子是节点&#xff0c;它们之间的键是边。 图神经网络的美妙之处在于它们…

大数据(三)大数据相关的职位

大数据&#xff08;三&#xff09;大数据相关的职位 本文目录&#xff1a; 一、写在前面的题外话 二、2022年就业状况 2.1、不同企业性质高校毕业生 CIER 指数 2.2、不同企业规模高校毕业生 CIER 指数 2.3、高校毕业生供求 TOP15 城市 2.4、一季度景气指数较高和较低的行…

AIGC ChatGPT 制作地图可视化分析

地图可视化分析是一种将数据通过地图的形式进行展示的方法&#xff0c;可以让人们更加直观、快速、准确的理解和分析数据。以下是地图可视化分析的一些主要好处&#xff1a; 加强数据理解&#xff1a;地图可视化可以将抽象的数字转化为直观的图形&#xff0c;帮助我们更好地理解…

UML建模以及几种类图的理解

文章目录 前言1.用例与用例图1.1 参与者1.2 用例之间的关系1.3 用例图1.4 用例的描述 2.交互图2.1 顺序图2.2 协作图 3.类图和对象图3.1 关联关系3.2 聚合和组合3.3 泛化关系3.4 依赖关系 4.状态图与活动图4.1 状态图4.2 活动图 5.构件图 前言 UML通过图形化的表示机制从多个侧…

软件工程(十四) 设计模式之结构型模式(二)

1、组合模式 简要说明 将对象组合成树形结构以表示“整体-部分”的层次结构,使得用户对单个对象和组合对象的使用具有一致性。 速记关键字 树形目录结构 类图如下 由类图其实可以看出,组合模式就是将具有父子关系的结构,组装形成一棵树,并且根据规范,树干节点和叶子节…

【Linux操作系统】Linux系统编程中的互斥锁

文章目录 1. 互斥锁的原理2. 互斥锁的相关函数3. 互斥锁的例子总结 1. 互斥锁的原理 在Linux系统编程中&#xff0c;互斥锁&#xff08;Mutex&#xff09;是一种用于保护共享资源的同步机制。它可以确保在任意时刻只有一个线程可以访问被保护的资源&#xff0c;从而避免了多个…

记录一次“top负1”比赛经历

获奖啦&#xff01; 比赛题目&#xff1a;中文语义病句识别与纠正挑战赛 比赛链接&#xff1a;https://challenge.xfyun.cn/topic/info?typeidentification-and-correction&optionphb“请介绍你们团队” “各位评委老师&#xff0c;我是来自WOT团队的选手AMBT&#xff0…

知识储备--基础算法篇-动态规划

1.前言 第一次接触动态规划&#xff0c;不知道具体什么意思&#xff0c;做了题才发现动态规划就是把大问题变成小问题&#xff0c;并解决了小问题重复计算的方法称为动态规划。比如上楼梯&#xff0c;一次上一阶或二阶&#xff0c;求有多少种算法&#xff0c;就可以拆成最后一…

【Flutter】Flutter 使用 infinite_scroll_pagination 实现无限滚动分页

【Flutter】Flutter 使用 infinite_scroll_pagination 实现无限滚动分页 文章目录 一、前言二、安装和基本使用1. 添加依赖2. 基础配置和初始化 三、实际业务中的用法1. 与 API 集成2. 错误处理 四、完整示例1. 创建一个无限滚动列表2. 使用在你的应用中3. 完整代码示例 五、总…

SFM structure from motion

struction就是空间三维点的位置 motion 就是相机每帧的位移 https://www.youtube.com/watch?vUhkb8Zq-dnM&listPL2zRqk16wsdoYzrWStffqBAoUY8XdvatV&index9

VBA Excel自定义函数的使用 简单的语法

一个简单的教程&#xff0c;实现VBA自定义函数。 新建模块 复制后面的代码放进来 函数的入口参数不定义&#xff0c;则认为是一块区域&#xff1b; 反之&#xff0c;如FindChar1 As String&#xff0c;则认为是输入的单值。 循环和分支如下例子&#xff0c;VB比较接近自然语…