【人工智能】ChatGPT多模型感知态识别

目录

  • ChatGPT辅助细化知识增强!
  • 一、研究背景
  • 二、模型结构和代码
      • 任务流程
      • 一:启发式生成
  • 三、数据集介绍
  • 三、性能展示
  • 实现过程
  • 运行过程
      • 训练过程

在这里插入图片描述

ChatGPT辅助细化知识增强!

在这里插入图片描述
多模态命名实体识别(MNER)最近引起了广泛关注。 用户在社交媒体上生成大量非结构化内容,主要由图像和文本组成。这些帖子具有与社交媒体相关的固有特征,包括简洁和非正式的写作风格。 这些独特的特征对传统的命名实体识别(NER)方法提出了挑战。

一、研究背景

社交媒体上的多模态命名实体识别(MNER)旨在通过结合基于图像的线索来增强文本实体预测。 现有的研究主要集中在最大限度地利用相关图像信息或结合显式知识库中的外部知识。

二、模型结构和代码

我的模型主要分为两个阶段。在生成辅助细化知识的阶段,我利用一组有限的预定义人工样本,并采用多模态相似示例感知模块来仔细选择相关实例。然后,将这些选定的示例合并到格式正确的提示中,从而增强为 ChatGPT 提供的启发式指导,以获取精炼的知识。

任务流程

  1. 任务公式化
    在这里插入图片描述

  2. 上下文学习
    在这里插入图片描述
    虽然GPT-4可以接受多模态信息输入,但这一功能仅处于内部测试阶段,尚未公开使用。此外,与ChatGPT相比,GPT-4的成本更高,API请求速度较慢。为了提高可复现性,我们仍然选择ChatGPT作为主要的研究对象,并且提供的这一范式也可以用于GPT-4。

为了使ChatGPT能够完成图文多模态任务,使用了先进的多模态预训练模型将图像转换为图像说明。最后将测试输入x设计为以下模板:
在这里插入图片描述

一:启发式生成

  1. 预定义的人工样本
    使ChatGPT在MNER任务中表现更好的关键在于选择合适的上下文示例。获取准确标注的上下文示例,这些示例能够精确反映数据集的标注风格并提供扩展辅助知识的途径,是一个显著的挑战。直接从原始数据集中获取这些示例并不可行。为了解决这个问题,我采用了随机抽样的方法,从训练集中选择一小部分样本进行人工标注。具体来说,对于Twitter-2017数据集,从训练集中随机抽取200个样本进行人工标注,而对于Twitter-2015数据集,数量为120。标注过程包括两个主要部分。第一部分是识别句子中的命名实体,第二部分是综合考虑图像和文本内容以及相关知识,提供全面的理由说明。在标注过程中遇到的多种情况中,标注者需要从人类的角度正确判断并解释样本。对于图像和文本相关的样本,我们直接说明图像中强调了文本中的哪些实体。对于图像和文本无关的样本,我们直接声明图像描述与文本无关。通过人工标注过程,强调了句子中的实体及其对应的类别。此外,引入了相关的辅助知识来支持这些判断。这个细致的标注过程为ChatGPT提供了指导,使其能够生成高度相关且有价值的回答。

  2. 多模态相似示例感知模块
    由于GPT的少样本学习能力在很大程度上取决于上下文示例的选择,我设计了多模态相似示例感知(MSEA)模块来选择合适的上下文示例。作为一个经典的多模态任务,MNER的预测依赖于文本和视觉信息的整合。因此,我们将文本和图像的融合特征作为评估相似示例的基本标准。而这种多模态融合特征可以从之前的多模态命名实体识别(MNER)模型中获得。将MNER数据集D和预定义的人工样本
    G

在这里插入图片描述

在以往的研究中,经过交叉注意力投射到高维潜在空间的融合特征H会直接输入到解码层,以进行结果预测。我们的模型选择HH作为相似示例的判断依据,因为在高维潜在空间中相近的示例更有可能具有相同的映射方式和实体类型。计算测试输入与每个预定义人工样本的融合特征H的余弦相似度。然后,选择前N个相似的预定义人工样本作为上下文示例,以启发ChatGPT生成辅助的精炼知识:
在这里插入图片描述
为了高效实现相似示例的感知,所有的多模态融合特征可以提前计算并存储。

三、数据集介绍

我们在两个公共 MNER 数据集上进行了实验:Twitter-2015和 Twitter-2017。这两个数据集都是从Twitter平台上收集的,包含了文本和图像的配对信息,主要用于研究在社交媒体短文本场景下的多模态命名实体识别和情感分析等任务。、

  1. Twitter-2015: 推文中的文本部分被手动标注了命名实体,并使用BIO2(Beginning- Inside-Outside)标注方案对命名实体进行分类。实体类别包括人物(Person)、组织(Organization)、地点(Location)等。3373/723/723(train/development/test)

三、性能展示

在这里插入图片描述

  • 本文所有资源均可在该地址处获取。

实现过程

在下载附件并准备好数据集并调试代码后,进行下面的步骤,附件已经调通并修改,可直接正常运行;
环境要求

python == 3.7
torch == 1.13.1
transformers == 4.30.2
modelscope == 1.7.1
  1. 我们的项目基于AdaSeq, AdaSeq项目基于Python版本>= 3.7和PyTorch版本>= 1.8。

  2. 下载

git clone https://github.com/modelscope/adaseq.git
cd adaseq
pip install -r requirements.txt -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
  1. 训练模型
python -m scripts.train -c examples/ER/twitter-15.yaml
	python -m scripts.train -c examples/ER/twitter-17.yaml

运行过程

训练过程

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/913678.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python 爱心邮件代码

import smtplib import time from email.mime.text import MIMEText import requests from lxml import etree import datetime from requests.exceptions import RequestException# 邮件配置 sender_maile # 发件人地址 sender_pass # 邮件授权码 boy_name # 发件人姓…

ssm+jsp704学术团队管理系统设计与实现

博主介绍:专注于Java(springboot ssm 等开发框架) vue .net php phython node.js uniapp 微信小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作 ☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不…

贪心算法-汽车加油

这道题目描述了一个汽车旅行场景,需要设计一个有效的算法来决定在哪几个加油站停车加油,以便最小化加油次数。题目给出了汽车加满油后的行驶距离n公里,以及沿途若干个加油站的位置。我们需要找出一个方案,使得汽车能够完成整个旅程…

[Docker#2] 发展历史 | Namespace环境隔离 | Cgroup资源控制

目录 1.发展历史 Jail 时代 云时代 云原生时代 技术标准的确立 虚拟机 vs Docker 2. 容器化技术 2.1 Namespace 命令详解 1. dd 命令 2. mkfs 命令 3. df 命令 4. mount 命令 5. unshare 命令 实战 进程隔离 文件隔离 2.2 CGroup 相关命令 2.1 pidstat 2.…

【Ubuntu学习】Ubuntu无法使用vim命令编辑

问题 在VMware首次安装Ubuntu,使用vi指令对文件进行编辑,按i键后无法更改文件内容。 原因 由于Ubuntu中预装的是vim-tiny,平时开发中需要使用vim-full。 解决方案 卸载预装vim sudo apt-get remove vim-common安装vim-full sudo apt-get …

同轴全息图和离轴全息图

一、同轴全息图 1.1 记录 设透明的物体(相位物)的振幅透过率为: t0是一个很高的平均透射率,表示围绕平均值的变化。 透射光场可以看成由两项组成: 一项是由t0表示的强而均匀的平面波, 它相当于波前记录时的参考波, 另一 项是Δt 所代表的弱散射波, 它相当于波前记录时的物光波…

Redhat切换其他源

1. 效果图 2. 安装 RPM 包的命令 rpm -ivh --nodeps --force epel-release-latest-8.noarch.rpm rpm -ivh --nodeps --force yum-4.7.0-4.el8.noarch.rpm rpm -ivh --nodeps --force yum-utils-4.0.21-3.el8.noarch.rpm 3. 修改默认源 vi /etc/yum.repos.d/redhat.repo[BaseO…

SpringMVC学习记录(三)之响应数据

SpringMVC学习记录(三)之响应数据 一、页面跳转控制1、快速返回模板视图2、转发和重定向 二、返回JSON数据1、前置准备2、ResponseBody 三、返回静态资源1、静态资源概念2、访问静态资源 /*** TODO: 一个controller的方法是控制层的一个处理器,我们称为h…

MethodChannel的用法

文章目录 1 知识回顾2 示例代码3 经验总结我们在上一章回中介绍了MethodChannel的使用方法,本章回中将介绍EventChannel的使用方法.闲话休提,让我们一起Talk Flutter吧。 1 知识回顾 我们在前面章回中介绍了通道的概念和作用,并且提到了通道有不同的类型,本章回将其中一种…

[每周一更]-(第122期):模拟面试|数据库面试思路解析

10|数据库索引:为什么 MySQL 用 B+ 树而不用 B 树? 为什么 MySQL 用 B+ 树而不用 B 树? 什么是覆盖索引? 什么是聚簇索引/非聚簇索引? 什么是哈希索引?MySQL InnoDB 引擎怎么创建一个哈希索引? 什么回表?如何避免回表? 树的高度和查询性能是什么关系? 什么是索引最左…

React的概念以及发展前景如何?

React是一个由Facebook开发的用于构建用户界面的的开源JavaScript库,它主要用于构建大型、动态的Web应用程序。React的主要特点是使用VirtualDOM(虚拟DOM)来优化性能,并使用声明式的编程方式来编写UI。 React的主要概念包括&#…

【Spring编程常见错误50例】03.依赖注入常见错误-上

1.多个实现类 如何匹配 在实际的开发中,我们会使用Autowired 注解进行依赖注入对应的bean,但是如果我们依赖的是一个接口,有对应多个实现的话,就会出现异常。 RestController public class DbController {Autowiredprivate DbSe…

智能母线插接箱监测装置的工作原理与实际应用分析

徐悦 安科瑞电气股份有限公司 随着电力系统的智能化发展,如何有效地监控电力系统的运行状态并保证系统安全性,成为电力运维中不可忽视的问题。AMB100智能母线直流监控装置应运而生。本文将详细介绍AMB100的工作原理及技术特点,结合实际应用…

USB包的结构

本文章主要来自《圈圈教你玩USB》的学习笔记 USB包的结构 USB是串行总线,所以数据是一位位的在数据总线上传输,采用LSB在前的方式。 USB数据需要经过位填充和NRZI编码。在这里讨论时,所用的数据都是原始数据,即没有经过位填充和…

让redis一直开启服务/自动启动

文章目录 你的redis是怎么打开的黑窗不能关?必须要自动启动吗?再说说mysql 本文的所有指令都建议在管理员权限下打开cmd控制台 推荐的以管理员身份打开控制台的方式 Win R 打开运行 输入cmdShift Ctrl Enter 你的redis是怎么打开的 安装过redis的朋友都知道, redis的安…

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.11

目录 第四门课 卷积神经网络(Convolutional Neural Networks)第四周 特殊应用:人脸识别和神经风格转换(Special applications: Face recognition &Neural style transfer)4.11 一维到三维推广(1D and 3…

基于图的去中心化社会推荐过滤器

🏡作者主页:点击! 🤖编程探索专栏:点击! ⏰️创作时间:2024年11月11日19点20分 点击开启你的论文编程之旅https://www.aspiringcode.com/content?id17176636216843&uideba758a1550b46bb…

云计算在教育领域的应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 云计算在教育领域的应用 云计算在教育领域的应用 云计算在教育领域的应用 引言 云计算概述 定义与原理 发展历程 云计算的关键技…

开始使用 Elastic AI Assistant 进行可观察性和 Microsoft Azure OpenAI

作者:Jonathan Simon 按照此分步过程开始使用 Elastic AI Assistant for Observability 和 Microsoft Azure OpenAI。 最近,Elastic 宣布,AI Assistant for Observability 现已面向所有 Elastic 用户开放。AI Assistant 为 Elastic Observabi…

uniapp—android原生插件开发(1环境准备)

本篇文章从实战角度出发,将UniApp集成新大陆PDA设备RFID的全过程分为四部曲,涵盖环境搭建、插件开发、AAR打包、项目引入和功能调试。通过这份教程,轻松应对安卓原生插件开发与打包需求! 项目背景: UniApp集成新大陆P…