Android GPU纹理数据拷贝

在 Android 开发中读取纹理数据有以下几种方法:

  • glReadPixels
  • ImageReader
  • PBO(Pixel BufferObject)
    HardwareBuffer

1. glReadPixels

glReadPixels 是 OpenGL ES 的 API,通常用于从帧缓冲区中读取像素数据,OpenGL ES 2.0 和 3.0 均支持。使用非常方便,但是效率也是最低的。

  • 当调用 glReadPixels 时,首先会影响 CPU 时钟周期,同时 GPU会等待当前帧绘制完成,读取像素完成之后,才开始下一帧的计算,造成渲染管线停滞。
  • glReadPixels 读取的是当前绑定 FBO 的颜色缓冲区图像,所以当使用多个 FBO(帧缓冲区对象)时,需要确定好我们要读那个FBO 的颜色缓冲区。
  • glReadPixels 性能瓶颈一般出现在大分辨率图像的读取,所以目前通用的优化方法是在 shader 中将处理完成的 RGBA 转成YUV(一般是 YUYV 格式),然后基于 RGBA 的格式读出 YUV 图像,这样传输数据量会降低一半,性能提升明显。

下面我们介绍两种使用 glReadPixels 来进行 RGBA 转换 NV21 的示例:

  • 直接获取 RGBA 数据
    这种方式 GPU 传输数据到 CPU 耗时比较长。
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, rgbaByteAddr);
libyuv::ABGRToNV21(rgbaByteAddr, width * 4, yByte, width, uvByte, width, width, height);;
glBindFramebuffer(GL_FRAMEBUFFER, 0);
  • OpenGL 扩展格式 YUV
// Draw Y
TextureAttributes textureAttriburesY = {
  .minFilter = GL_LINEAR,
  .magFilter = GL_LINEAR,
  .wrapS = GL_CLAMP_TO_EDGE,
  .wrapT = GL_CLAMP_TO_EDGE,
  .internalFormat = GL_RED_EXT,
  .format = GL_RED_EXT,
  .type = GL_UNSIGNED_BYTE
};

varying vec2 textureCoordinate;
uniform sampler2D inputImageTexture;
void main()
{
 vec4 color = texture2D(inputImageTexture,textureCoordinate);
 gl_FragColor.r = color.r*0.2990+color.g*0.5870+color.b*0.1140;
}

// Draw UV
TextureAttributes textureAttriburesVU = {
  .minFilter = GL_LINEAR,
  .magFilter = GL_LINEAR,
  .wrapS = GL_CLAMP_TO_EDGE,
  .wrapT = GL_CLAMP_TO_EDGE,
  .internalFormat = GL_RG_EXT,
  .format = GL_RG_EXT,
  .type = GL_UNSIGNED_BYTE
};

varying vec2 textureCoordinate;
uniform sampler2D inputImageTexture;
void main()
{
 vec4 color = texture2D(inputImageTexture,textureCoordinate);
 gl_FragColor.rg = vec2(0.6150*color.r - 0.5150*color.g - 0.1000*color.b+0.5000,-0.1471*color.r - 0.2889*color.g + 0.4360*color.b+0.5000);
}

glBindFramebuffer(GL_FRAMEBUFFER, yFbo);
glReadPixels(0, 0, width, height, GL_RED_EXT, GL_UNSIGNED_BYTE, yuv_byte);
glBindFramebuffer(GL_FRAMEBUFFER, 0);

glBindFramebuffer(GL_FRAMEBUFFER, uvFbo);
glReadPixels(0, 0, width / 2, height / 2, GL_RG_EXT, GL_UNSIGNED_BYTE, yuv_byte + width * height);
glBindFramebuffer(GL_FRAMEBUFFER, 0);

2. ImageReader

2.1 ImageReader 基础描述

ImageReader 是 Android 中的一个类,用于获取相机设备的图像数据。它可以用于捕获相机拍摄的静态图像或实时预览帧,并提供对图像数据的访问和处理。以下是一些 ImageReader 的特点和用法:

  • 获取图像数据:通过创建一个 ImageReader 实例,可以指定要获取的图像的宽度、高度和图像格式。然后,可以使用ImageReader 的 acquireLatestImage() 或 acquireNextImage() 方法获取最新的图像或下一帧图像。这些方法返回一个 Image 对象,它包含了图像的数据和相关信息。
  • 图像数据访问:通过 Image 对象,可以访问图像的像素数据。可以使用 getPlanes() 方法获取图像的平面数组,每个平面对应于图像的不同颜色通道。然后,可以使用 getBuffer() 方法获取每个平面的 ByteBuffer,从中读取或修改像素数据。
  • 回收资源:使用完 Image 对象后,应调用其 close() 方法释放资源,以避免内存泄漏。
  • 设置图像可用监听器:可以为 ImageReader 设置一个 OnImageAvailableListener 监听器,在新图像可用时收到通知,这样可以实现对图像数据的实时处理和分析。
  • 配置图像输出:可以使用 ImageReader 的 setOnImageAvailableListener() 方法设置监听器,并通过 ImageReader 的 getSurface() 方法获取一个 Surface 对象,将其用于预览或拍照时的图像输出目标。

2.2 ImageReader 如何使用

我们可以使用 ImageReader 对象的 Surface 对象搭配 OpenGL 进行数据渲染。

mImageReader = ImageReader.newInstance(width, height, ImageFormat.YUV_420_888, 2);
mImageReader.setOnImageAvailableListener(mOnImageAvailableListener, mHandler);
mSurface = mImageReader.getSurface();
private ImageReader.OnImageAvailableListener mOnImageAvailableListener = new ImageReader.OnImageAvailableListener() {
    @Override
    public void onImageAvailable(ImageReader reader) {
        Image image = reader.acquireLatestImage();
        if (image != null) {
           image.close();
        }
    }
};

部分重要 API:

  • acquireLatestImage() 从 ImageReader 队列中获取最新的一帧 Image ,并且将老的 Image 丢弃,如果没有新的可用的 Image 则返回 null 。此操作将会从 ImageReader 中获取所有可获取到的 Images ,并且关闭除了最新的 Image 之外的 Image 。此功能大多数情况下比 acquireNextImage 更推荐使用,更加适用于视频实时处理。需要注意的是 maxImages 应该至少为 2 ,因为丢弃除了最新的之外的所有帧需要至少两帧。换句话说,(maxImages - currentAcquiredImages < 2) 的情况下,丢帧将会不正常。
  • acquireNextImage() 从 ImageReader 的队列中获取下一帧 Image ,如果没有新的则返回 null。Android 推荐我们使用 acquireLatestImage 来代替使用此方法,因为它会自动帮我们 close 掉旧的 Image,并且能让效率比较差的情况下能获取到最新的 Image 。acquireNextImage 更推荐在批处理或者后台程序中使用,不恰当的使用本方法将会导致得到的 images 出现不断增长的延迟。
  • close() 释放所有跟此 ImageReader 关联的资源。调用此方法后,ImageReader 不会再被使用,再调用它的方法或者调用被 acquireLatestImage 或 acquireNextImage 返回的 Image 会抛出 IllegalStateException,尝试读取之前 Plane#getBuffer 返回的 ByteBuffers 将会导致不可预测的行为。
  • newInstance(int width, int height, int format, int maxImages) 创建新的 reader 以获取期望的 size 和 format 的 Images。maxImages 决定了 ImageReader 能同步返回的最大的 Image 的数量,申请越多的 buffers 会耗费越多的内存空间,使用合适的数量很重要。
  • newInstance(int width, int height, int format, int maxImages) 创建新的 reader 以获取期望的 size 和 format 的 Images。maxImages 决定了 ImageReader 能同步返回的最大的 Image 的数量,申请越多的 buffers 会耗费越多的内存空间,使用合适的数量很重要。
  • maxImages:缓存的最大帧数,必须大于 0。

3. PBO(Pixel Buffer Object)

3.1 PBO 基础介绍

OpenGL PBO(Pixel Buffer Object),被称为像素缓冲区对象,主要被用于异步像素传输操作。PBO 仅用于执行像素传输,不连接到纹理,且与 FBO (帧缓冲区对象)无关。OpenGL PBO(像素缓冲区对象) 类似于 VBO(顶点缓冲区对象),PBO 开辟的也是 GPU 缓存,而存储的是图像数据。PBO 是 OpenGL ES 3.0 开始提供的一种方式,主要应用于从内存快速复制纹理到显存,或从显存复制像素数据到内存。

在使用 OpenGL 的时候经常需要在 GPU 和 CPU 之间传递数据,例如在使用 OpenGL 将 YUV 数据转换成 RGB 数据时就需要先将 YUV 数据上传到 GPU ,一般使用函数 glTexImage2D ,处理完毕后再将 RGB 结果数据读取到 CPU , 这时使用函数 glReadPixels 即可将数据取回。但是这两个函数都是比较缓慢的,特别是在数据量比较大的时候。PBO 就是为了解决这个访问慢的问题而产生的。

不使用 PBO 加载纹理:
在这里插入图片描述
使用 PBO 加载纹理:
在这里插入图片描述

3.2 PBO 如何使用?

int imgByteSize = m_Image.width * m_Image.height * 4;//RGBA

glGenBuffers(1, &uploadPboId);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pboId);
glBufferData(GL_PIXEL_UNPACK_BUFFER, imgByteSize, 0, GL_STREAM_DRAW);

glGenBuffers(1, &downloadPboId);
glBindBuffer(GL_PIXEL_PACK_BUFFER, downloadPboId);
glBufferData(GL_PIXEL_PACK_BUFFER, imgByteSize, 0, GL_STREAM_DRAW);

使用两个 PBO 从帧缓冲区读回图像数据:
在这里插入图片描述
如上图所示,利用 2 个 PBO 从帧缓冲区读回图像数据,使用 glReadPixels 通知 GPU 将图像数据从帧缓冲区读回到 PBO1 中,同时 CPU 可以直接处理 PBO2 中的图像数据。

// 交换 PBO
int index = m_FrameIndex % 2;
int nextIndex = (index + 1) % 2;

// 将图像数据从帧缓冲区读回到 PBO 中
glBindBuffer(GL_PIXEL_PACK_BUFFER, m_DownloadPboIds[index]);
glReadPixels(0, 0, m_RenderImage.width, m_RenderImage.height, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);

// glMapBufferRange 获取 PBO 缓冲区指针
glBindBuffer(GL_PIXEL_PACK_BUFFER, m_DownloadPboIds[nextIndex]);
GLubyte *bufPtr = static_cast<GLubyte *>(glMapBufferRange(GL_PIXEL_PACK_BUFFER, 0,
                                                       dataSize,
                                                       GL_MAP_READ_BIT));
if (bufPtr) {
    nativeImage.ppPlane[0] = bufPtr;
    //NativeImageUtil::DumpNativeImage(&nativeImage, "/sdcard/DCIM", "PBO");
    glUnmapBuffer(GL_PIXEL_PACK_BUFFER);
}
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);

4. HardwareBuffer

4.1 HardwareBuffer 基础介绍

HardwareBuffer 官方介绍为一种底层的内存 buffer 对象,可在不同进程间共享,可映射到不同硬件系统,如 GPU、传感器等,从构造函数可以看出,其可以指定 format 和 usage,用来让底层选择最合适的实现,目前 format 主要是渲染相关的纹理格式,Android 11 之后支持了 BLOB 格式,可用来做 NN 相关的数据共享。

如果看一下 HardwareBuffer 的实现,会发现其只是 GraphicBuffer 的一个包装,只是 Android 低版本并没有开放 GraphicBuffer 相关 API,而前面提到的 Surface ,其底层就是基于 GraphicBuffer 来实现的,因此本质上是 Android 系统开放了更底层的 API,我们才可以有更高效的实现,接下来看具体如何基于 HardwareBuffer 跨进程传输纹理。
在这里插入图片描述

4.2 HardwareBuffer 如何使用?

AHardwareBuffer 创建纹理:

if(textureID == 0){
    AHardwareBuffer_Desc h_buffer_desc = {0};
    h_buffer_desc.stride = frameData->i32Width;
    h_buffer_desc.height = frameData->i32Height;
    h_buffer_desc.width = frameData->i32Width;
    h_buffer_desc.layers = 1;
    h_buffer_desc.format = 0x11;
    h_buffer_desc.usage = AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN | AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE;
 
    int ret = AHardwareBuffer_allocate(&h_buffer_desc, &inputHWBuffer);
    EGLint attr[] = {EGL_NONE};
    EGLDisplay edp;
    edp = (EGLDisplay)eglGetCurrentDisplay();
    inputEGLImage) = eglCreateImageKHR(edp, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID, eglGetNativeClientBufferANDROID(inputHWBuffer), attr);
    glGenTextures(1, &textureID);
    glBindTexture(GL_TEXTURE_EXTERNAL_OES, textureID);
    glTexParameteri(GL_TEXTURE_EXTERNAL_OES , GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_EXTERNAL_OES , GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glEGLImageTargetTexture2DOES(GL_TEXTURE_EXTERNAL_OES , (GLeglImageOES)inputEGLImage);
}
AHardwareBuffer_Planes planes_info = {0}; int ret = AHardwareBuffer_lockPlanes(inputHWBuffer, AHARDWAREBUFFER_USAGE_CPU_WRITE_MASK, -1,nullptr,&planes_info);
if (ret == 0) {
    memcpy(planes_info.planes[0].data,frameData->ppu8Plane[0],frameData->i32Width * frameData->i32Height*3/2);
    ret = AHardwareBuffer_unlock(inputHWBuffer, nullptr); 
}
glBindTexture(GL_TEXTURE_EXTERNAL_OES, textureID);

AHardwareBuffer 读取纹理图像数据:

unsigned char *ptrReader = nullptr;
ret = AHardwareBuffer_lock(inputHWBuffer, AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN, -1,     nullptr, (void **) &ptrReader); 
memcpy(dstBuffer, ptrReader, imgWidth * imgHeight * 3 / 2);
ret = AHardwareBuffer_unlock(inputHWBuffer, nullptr);

ImageReader、 PBO 和 HardwareBuffer 明显优于 glReadPixels 方式,HardwareBuffer、ImageReader 以及 PBO 三种方式性能相差不大,但是理论上 HardwareBuffer 性能最优。

补充:OPENGL NCNN GPU零拷贝实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/913486.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

NVM切换本地node版本

1、下载nvm https://github.com/coreybutler/nvm-windows/releases nvm-windows 然后点击nvm-setup.exe下载&#xff0c;尽可能都选择默认安装选项 2、nvm常用命令 使用以下命令安装特定版本的 Node.js&#xff1a; nvm install <version> nvm install 14.17.0 使…

GNN系统学习:消息传递图神经网络

引言 在开篇中我们介绍了&#xff0c;为节点生成节点表征&#xff08;Node Representation&#xff09;是图计算任务成功的关键&#xff0c;我们要利用神经网络来学习节点表征。 消息传递范式是一种聚合邻接节点信息来更新中心节点信息的范式&#xff0c;它将卷积算子推广到了…

C语言 | Leetcode C语言题解之第554题砖墙

题目&#xff1a; 题解&#xff1a; struct HashTable {int key, val;UT_hash_handle hh; };int leastBricks(int** wall, int wallSize, int* wallColSize) {struct HashTable* cnt NULL;for (int i 0; i < wallSize; i) {int n wallColSize[i];int sum 0;for (int j …

全文检索ElasticSearch到底是什么?

学习ElasticSearch之前&#xff0c;我们先来了解一下搜索 1 搜索是什么 ① 概念&#xff1a;用户输入想要的关键词&#xff0c;返回含有该关键词的所有信息。 ② 场景&#xff1a; ​ 1互联网搜索&#xff1a;谷歌、百度、各种新闻首页&#xff1b; ​ 2 站内搜索&#xff…

【C++】vector模拟实现、迭代器失效问题(超详解)

vector会使用之后我们来模拟实现一下&#xff0c;通过对vector的模拟实现&#xff0c;我们来说一下迭代器失效问题。 1.准备工作 在头文件vector.h里声明和实现函数&#xff0c;然后在test.cpp里测试代码的正确性。 在vector.h中用命名空间分隔一下&#xff0c;因为c库里面也有…

前端CSS3 渐变详解

文章目录 CSS3 渐变详解一、引言二、CSS3 渐变基础1、线性渐变1.1、基本线性渐变1.2、改变渐变方向 2、径向渐变2.1、基本径向渐变2.2、设置径向渐变的中心 三、高级渐变技巧1、重复渐变1.1、重复线性渐变1.2、重复径向渐变 四、总结 CSS3 渐变详解 一、引言 在现代网页设计中…

Docker学习—Docker的安装与使用

Docker安装 1.卸载旧版 首先如果系统中已经存在旧的Docker&#xff0c;则先卸载&#xff1a; yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine2.配置Docker的yum库 首先…

M1M2 MAC安装windows11 虚拟机的全过程

M1/M2 MAC安装windows11 虚拟机的全过程 这两天折腾了一下windows11 arm架构的虚拟机&#xff0c;将途中遇到的坑总结一下。 1、虚拟机软件&#xff1a;vmware fusion 13.6 或者 parallel 19 &#xff1f; 结论是&#xff1a;用parellel 19。 这两个软件都安装过&#xff0…

蓝桥杯备考——算法

一、排序 冒泡排序、选择排序、插入排序、 快速排序、归并排序、桶排序 二、枚举 三、二分查找与二分答案 四、搜索&#xff08;DFS&#xff09; DFS&#xff08;DFS基础、回溯、剪枝、记忆化&#xff09; 1.DFS算法&#xff08;深度优先搜索算法&#xff09; 深度优先搜…

‘conda‘ 不是内部或外部命令,也不是可运行的程序或批处理文件,Miniconda

下载了conda&#xff0c;但是在cmd里执行conda --version会显示’conda’ 不是内部或外部命令&#xff0c;也不是可运行的程序或批处理文件。 原因是环境变量里没有添加conda&#xff0c;无法识别路径。 需要在系统环境变量里添加如下路径&#xff1a; 保存之后重新打开cmd&am…

UE5 随机生成地牢关卡

参考视频&#xff1a;【UE5 | 教程 | 地编】虚幻引擎5 中创建史诗级 程序化 地下城_哔哩哔哩_bilibili 首先创建一个父项Actor 这个BOX碰撞提是和地板重叠的 这三个是场景组件&#xff0c;这个ExitsFolder下面的箭头等会会在子蓝图中添加 接下来创建BP_MasterRoom的子蓝图&…

Qt信号和槽-->day04

Qt信号和槽 标准的信号和槽函数Qt中的槽函数Qt中的信号 connect案例 自定义信号和槽案例分析 信号槽的拓展信号连接信号案例 信号槽的两种连接方式Qt5中的处理方式Qt4中的处理方式Qt5处理信号槽重载问题案例 lambda表达式简单案例Qt中的应用 补充知识点 标准的信号和槽函数 QW…

十大经典排序算法-冒泡算法详解介绍

1、十大经典排序算法 排序算法是《数据结构与算法》中最基本的算法之一。 排序算法可以分为内部排序和外部排序&#xff0c;内部排序是数据记录在内存中进行排序&#xff0c;而外部排序是因排序的数据很大&#xff0c;一次不能容纳全部的排序记录&#xff0c;在排序过程中需要…

ASMR助眠声音视频素材去哪找 吃播助眠素材网站分享

在快节奏的现代生活中&#xff0c;越来越多的人感到压力山大&#xff0c;许多人开始寻求助眠和放松的方式。而ASMR&#xff08;自发性知觉经络反应&#xff09;助眠声音视频&#xff0c;凭借其独特的声音刺激和放松效果&#xff0c;成为了睡前的“神器”。如果你是一位内容创作…

【Linux】常用命令(2.6万字汇总)

文章目录 Linux常用命令汇总1. 基础知识1.1. Linux系统命令行的含义1.2. 命令的组成 2. 基础知识2.1. 关闭系统2.2. 关闭重启2.3. 帮助命令&#xff08;help&#xff09;2.4. 命令说明书&#xff08;man&#xff09;2.5. 切换用户&#xff08;su&#xff09;2.6.历史指令 3.目录…

量化分析工具日常操作日记-5-通合科技

使用量化分析微信小程序工具“梦想兔企业智能风险分析助手”日常操作日记-5-军工-通合科技&#xff08;300491&#xff09;。 周末国家新政策&#xff0c;要大力支持军工行业&#xff0c;我用工具挖掘了两个低位股&#xff0c;供大家参考。通合科技&#xff08;300491&#xff…

4D施工奇迹:废弃码头变身地标体育场

SYNCHRO 促进协同和战略性施工&#xff0c;完成大型项目交付 改造举世闻名的海滨城市 为了提升球迷的比赛日体验&#xff0c;英国足球俱乐部埃弗顿足球俱乐部正在利物浦默西河畔废弃的布拉姆利摩尔码头建造一座新的现代化体育场。该体育场是利物浦城市总体规划的一部分&#xf…

图神经网络(GNN)入门笔记(1)——图信号处理与图傅里叶变换

一、信号处理&#xff1a;时域与频域 时域&#xff08;Time Domain&#xff09;是我们生活中常见的信号表示方式&#xff0c;以横轴为时间&#xff0c;纵轴为信号该时刻的强度&#xff08;幅度&#xff09;&#xff0c;就可以得到一张时域图。打个比方&#xff0c;通过每时每刻…

【八百客CRM-注册安全分析报告-无验证方式导致安全隐患】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 1. 暴力破解密码&#xff0c;造成用户信息泄露 2. 短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉 3. 带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造…

【AIGC】如何在ChatGPT中制作个性化GPTs应用详解

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | GPTs应用实例 文章目录 &#x1f4af;前言&#x1f4af;什么是GPTsGPTs的工作原理GPTs的优势GPTs的应用前景总结 &#x1f4af;创建GPTS应用的基本流程进入GPTs创建界面方式一&#xff1a;按照引导完成生成创建GPTs方式二…