Ansys Zemax | 手机镜头设计 - 第 4 部分:用LS-DYNA进行冲击性能分析

该系列文章将讨论智能手机镜头模组设计的挑战,从概念和设计到制造和结构变形分析。本文是四部分系列中的第四部分,它涵盖了相机镜头的显式动态模拟,以及对光学性能的影响。使用Ansys Mechanical和LS-DYNA对相机在地板上的一系列冲击和弹跳过程进行显式动力学模拟,其中 LS - DYNA 用于解决跌落物理问题,然后通过STAR工具将其导入Ansys Zemax optic studio Enterprise,进而研究对光学性能产生的影响。

  • Ansys Zemax | 手机镜头设计 - 第 1 部分:光学设计icon-default.png?t=O83Ahttps://mp.weixin.qq.com/s?__biz=MzIxNzE5MDU4Mg==&mid=2650053772&idx=1&sn=ad09702fc3eaa58fea37843a4da28372&chksm=8ffda555b88a2c435b05a01dad0b8006e8c421d11de7e515c13f895c883f93fb34b195241f01&token=1134198106&lang=zh_CN#rd

  • Ansys Zemax | 手机镜头设计 - 第 2 部分:使用 OpticsBuilder 实现光机械封装icon-default.png?t=O83Ahttps://mp.weixin.qq.com/s?__biz=MzIxNzE5MDU4Mg==&mid=2650053838&idx=1&sn=00ea3ad15a8e69ad4de38bb2dbf3e8fb&chksm=8ffda517b88a2c01532fcae47aff95cb26937e9d22e77f872bbb02134808989d2a189148dbfe&token=1134198106&lang=zh_CN#rd

  • Ansys Zemax | 手机镜头设计 - 第 3 部分:使用 STAR 模块和 ZOS-API 进行 STOP 分析icon-default.png?t=O83Ahttps://mp.weixin.qq.com/s?__biz=MzIxNzE5MDU4Mg==&mid=2650054345&idx=1&sn=046c9f8b676af5b47ac424b168c38b3f&chksm=8ffda710b88a2e069b2d651dfde305caac76f5f80c53252ed638a58858a28337709dc18a821b&token=1134198106&lang=zh_CN#rd

附件下载

联系工作人员获取附件

介绍

Ansys LS-DYNA (LS-DYNA)与本系列文章前面部分的Ansys工具(Ansys Zemax OpticStudio、Speos、Mechanical 和 Workbench)一起,可以将仿真工作流扩展为显式动力学,LS-DYNA 广泛用于各种分析,它的核心能力之一是显式动态。Ansys LS-DYNA适用于分析涉及接触、大变形、非线性材料、瞬态响应和/或需要显式解决方案的问题。

LS - DYNA Workbench 系统(WB LS - DYNA)允许用户使用 LS - DYNA 求解器对模型进行显式动力学分析。虽然它允许在一个环境中进行预处理、求解和后处理,但该工作流需要结合使用 WB LS - DYNA 和 LS Prep - Post 进行高级后处理。

与本系列文章的第3部分“Ansys Zemax | 手机镜头设计 - 第 3 部分:使用 STAR 模块和 ZOS-API 进行 STOP 分析”类似,本部分也使用 Ansys Mechanical 生成 FEA 数据集。然而,第3部分的重点是使用 STAR 工具和 ZOS API 自动导入有限元分析数据,而第4部分的重点是生成显式动力学结果,并在 Ansys Zemax 中查看光学性能。这两个工作流程都需要 Ansys Zemax opticstudio Enterprise 中的 STAR 工具来处理 FEA 变形。

使用显式动力学进行有限元分析

手机摄像头的光机系统(光机设计见第 2 部分)被加载到 Ansys Workbench 中,并导入到 LS - DYNA 分析系统中。为了使碰撞模拟更真实,摄像头系统被放置在一个更大的机身内,该机身具有常见智能手机设备的尺寸和形状。

IM1.png

模拟包含摄像头系统掉落在平坦表面上的瞬态序列。平坦表面(可能是地板)在上面的图像中被标记为红色,并被设置为固定支撑。固定支撑是一种边界条件,可防止选定的几何图形或网格实体移动或变形。

假设物体从静止状态(初速度= 0)落下,仅因重力下落,那么撞击时的速度可以用以下公式计算:

EQ1.png

其中,v=冲击速度,g =重力加速度(9.8 m/s²),h = 摄像机系统落下的高度。假设带有摄像系统的手机从1.5米的高度(大约相当于一个普通人的手的高度)掉落,撞击速度为

EQ2.png

这导致整个手机产生以下初始变形:

以及透镜本身的以下变形:

  • 请注意,出于演示目的,视觉变形已按比例放大。

为了分析此跌落测试对光学性能的影响,需要单个透镜的变形数据集。为了提取数据集,为每个透镜面创建一个命名选择。在 WB - LSDYNA 中求解模拟后,在 LS - PrePost 中读取输入文件和结果。LS - PrePost 是 LS - DYNA 的专用前后处理工具。在 LS - PrePost 中,运行一个脚本来将特定面(在命名选择中定义)的变形导出为正确的格式,以便可以通过 STAR 工具将它们导入到 Ansys Zemax OpticStudio 中。

模拟涉及两个步骤,并且从两个步骤中都导出变形数据集:

  • 冲击分析:这是模拟时间的 0 - 0.1ms,即冲击发生时。

  • 冲击后分析:这是冲击状态后 1 秒,此时允许振动衰减以避免变形中出现任何不必要的噪声。

将 FEA 数据加载到 Ansys Zemax OpticStudio 中

在 Ansys Mechanical 中生成 FEA 数据集后,现在可以将它们加载到 OpticStudio 中。如本系列文章第 1 部分所述,名义上的手机摄像头系统已在 OpticStudio 中设计并优化了性能。透镜系统本身的设计基于一项专利,包含五个主要的非球面透镜:

IM2.png

为了分析和比较手机摄像头在三种主要状态(冲击、冲击后和名义)下的性能,通过 OpticStudio 主窗口顶部 STAR 选项卡中的多物理场数据加载器导入 FEA 数据集。

IM3.png

对于代表透镜或光学组件物理表面的每个表面,分配一个 “Surface_deformation” 数据集。由于自从从 OpticStudio 导出名义几何形状以来坐标系没有改变,因此为特定表面对齐数据集并设置为全局坐标系。如果不是这种情况,可以将坐标系更改为局部坐标系,或者可以应用用户定义的变换。在将数据集分配给表面后,可以通过单击 “OK(Fit Multiphysics Data)” 加载和拟合数据集。

不同状态下的光学性能分析

加载和拟合多物理场数据后,现在可以分析不同状态的性能,更重要的是进行比较。由于这是一个手机摄像头系统,在性能分析过程中有一些分析工具可供使用。在这种情况下,使用以下分析工具进行分析和比较:

  • 图像模拟 - 此功能通过将源位图文件与点扩散函数阵列进行卷积来模拟图像的形成。考虑的影响包括衍射、像差、畸变、相对照明、图像方向和偏振。

  • 波前图 - 显示光瞳上的波前误差。

  • STAR 系统查看器(变形) - 显示由于拟合的多物理场数据而导致的表面变形和光学性质变化的系统范围视图。

名义状态

由于透镜系统已经针对这种状态进行了优化,所以图像模拟的质量非常好。波前误差是旋转对称的,最大误差为0.225波。没有显示变形,因为没有应用多物理数据。这将作为基线和性能的“理想”状态。

IM4.png

冲击状态

当加载冲击状态的数据集时,很明显可以看出相机系统的性能可以被认为是不可用的。变形太大,以至于图像模拟和波前图的结果可以被声明为 “陈旧数据”。有趣的是,可以在 STAR 系统查看器中看到透镜系统的变形幅度。平均变形约为0.33mm,对于一个光学系统来说,变形太大以至于无法执行并产生任何有意义的结果。

IM5.png

OpticStudio 中 STAR 工具的一大优势是可以将刚体运动的效果与曲面变形的效果分离。这可以通过结构数据摘要中的简单勾选框来实现,并且可以随时打开或关闭。在下面的动态图中,从完整的变形数据开始,首先 RBM 部分被禁用,然后变形效果被全部忽略:

在上面显示的分析结果中,包括了 RBM。下面显示了相同的分析,但这次排除了 RBM。这使您能够观察高阶变形,这在光学分析过程中很重要。STAR 系统查看器显示平均变形幅度约为 0.025mm,这导致波前误差约为40个波长,与给出大约四分之一波长的波前误差的标称性能相比,这仍然表示严重的光学像差。如此大的波前误差导致图像质量严重下降,这可以在图像模拟中看到。

IM7.png

  • 联系工作人员了解关于 RBM 变形和高阶变形比较的更多信息

冲击后状态

冲击后状态的结果如下所示。

IM8.png

查看 STAR 系统查看器的变形矢量,仍然有趣的是,在一些透镜的边缘区域仍然有大约 0.025mm 的变形幅度。然而,很明显可以看出最后一个透镜(即红外滤光片)的幅度显著下降。这导致性能仍然明显比名义状态差,但产生了更可用的结果。波前图显示误差约为 ±15 波,这仍然远远超过此类光学系统的可接受极限。图像模拟显示了透镜变形与摄像头系统中可能出现的畸变和像差之间的直接联系。物体可以识别,但非常模糊。

结论

本系列文章的第 4 部分展示了如何在 Ansys Workbench 中使用 Ansys LS - DYNA 模拟手机摄像头模块的跌落测试的显式动力学。使用 Ansys Mechanical 提取了冲击和冲击后状态的变形数据集并进行处理,以便在 Ansys Zemax OpticStudio 中使用。在 Ansys Zemax OpticStudio 中,可以通过 STAR 模块加载 FEA 数据集并将其分配给光学系统。这样,光学工程师可以研究和比较光学系统在冲击和冲击后状态变形影响下的性能。

后续步骤

在这个示例中,我们分析了跌落测试中的光学性能。同样,LS-DYNA- Mechanical - Zemax 工作流程还可以应用于研究振动或累积冲击等其他领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/913019.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

凸优化理论,凸二次规划问题,对偶问题及KKT条件

凸优化理论 ​ 研究凸优化之前我们不妨提出几个小问题: 什么是优化问题?优化问题的解是什么?什么是凸优化问题?凸优化问题的解决方案是什么? 1.1 优化问题 ​ 理解优化问题其实很简单,我们其实从高中事…

实战攻略 | ClickHouse优化之FINAL查询加速

【本文作者:擎创科技资深研发 禹鼎侯】 查询时为什么要加FINAL 我们在使用ClickHouse存储数据时,通常会有一些去重的需求,这时候我们可以使用ReplacingMergeTree引擎。这个引擎允许你存储重复数据,但是在merge的时候会根据order …

3DGS与NeRF的区别

0 论文链接 nerf:https://arxiv.org/abs/2003.08934 3dgs:https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf 1 简要 1.1 nerf neural radiance fields神经辐射场 作者提出了一种优化来自一组输入图像的场景…

关于python的复习

Python的基础 自动声明: 在 Python 中,不需要显式声明变量类型,变量的类型是在赋值时根据值自动推断的。 动态类型: Python 是动态类型语言,变量的类型可以在运行时改变。 x 10 # 整数 x "hello" # 现在是字符串 变量…

HBuilderX运行微信小程序,编译的文件在哪,怎么运行

1. 点击HBuilderX顶部的运行-运行到小程序模拟器-微信开发者工具,就会开始编译 2. 编译完成后的文件在根目录找到 unpackage -- dist -- dev -- mp-weixin, 这里面就是编译后的文件,如果未跳转到开发者工具,那可能是没设置启动路径&#xff0…

自然语言处理在客户服务中的应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 自然语言处理在客户服务中的应用 自然语言处理在客户服务中的应用 自然语言处理在客户服务中的应用 引言 自然语言处理概述 定义…

【学习笔记】Kylin-Desktop-V10-SP1 麒麟系统知识4——设备设置

提示:学习麒麟Kylin-Desktop-V10-SP1系统设备设置相关知识,包含设备设置进入方法、配置打印机、设置鼠标、键盘相关参数(包含输入法的配置)、以及管理快捷键组合、和多屏协同相关配置 一、前期准备 成功安装麒麟系统&#xff08…

Gen-RecSys——一个通过生成和大规模语言模型发展起来的推荐系统

概述 生成模型的进步对推荐系统的发展产生了重大影响。传统的推荐系统是 “狭隘的专家”,只能捕捉特定领域内的用户偏好和项目特征,而现在生成模型增强了这些系统的功能,据报道,其性能优于传统方法。这些模型为推荐的概念和实施带…

【国内中间件厂商排名及四大中间件对比分析】

国内中间件厂商排名 随着新兴技术的涌入,一批国产中间件厂商破土而出,并在短时间内迅速发展,我国中间件市场迎来洗牌,根据市占率,当前我国中间件厂商排名依次为:东方通、宝兰德、中创股份、金蝶天燕、普元…

PVE纵览-备份与快照指南

PVE纵览-备份与快照指南 文章目录 PVE纵览-备份与快照指南摘要1 备份与快照概述定义与区别备份与快照在PVE中的应用场景 2 PVE 备份功能详解备份类型与策略配置备份任务自动化备份管理 3 PVE 快照功能详解快照的工作原理快照的创建与恢复机制快照对系统性能的影响快照的使用场景…

解非线性方程组

实验类型:●验证性实验 ○综合性实验 ○设计性实验 实验目的:进一步熟练掌握解非线性方程组牛顿迭代算法,提高编程能力和解算非线性方程组问题的实践技能。 实验内容: 设有非线性方程组(此方程组是非标准型) 实验说明&#xff1…

JavaWeb合集23-文件上传

二十三 、 文件上传 实现效果&#xff1a;用户点击上传按钮、选择上传的头像&#xff0c;确定自动上传&#xff0c;将上传的文件保存到指定的目录中&#xff0c;并重新命名&#xff0c;生成访问链接&#xff0c;返回给前端进行回显。 1、前端实现 vue3AntDesignVue实现 <tem…

设计模式-七个基本原则之一-开闭原则 + SpringBoot案例

开闭原则:(SRP) 面向对象七个基本原则之一 对扩展开放&#xff1a;软件实体&#xff08;类、模块、函数等&#xff09;应该能够通过增加新功能来进行扩展。对修改关闭&#xff1a;一旦软件实体被开发完成&#xff0c;就不应该修改它的源代码。 要看实际场景&#xff0c;比如组内…

图形几何之美系列:仿射变换矩阵(二)

“ 在几何计算、图形渲染、动画、游戏开发等领域&#xff0c;常需要进行元素的平移、旋转、缩放等操作&#xff0c;一种广泛应用且简便的方法是使用仿射变换进行处理。相关的概念还有欧拉角、四元数等&#xff0c;四元数在图形学中主要用于解决旋转问题&#xff0c;特别是在三维…

python识别ocr 图片和pdf文件

#识别图片 pip3 install paddleocr pip3 install paddlepaddle#识别pdf pip3 install PyMuPDF 重点&#xff1a;路径不能有中文&#xff0c;不然pdf文件访问不了 from paddleocr import PaddleOCR from rest_framework.response import Response from rest_framework.views im…

使用Ubuntu快速部署MinIO对象存储

想拥有自己的私有云存储&#xff0c;安全可靠又高效&#xff1f;MinIO是你的理想选择&#xff01;这篇文章将手把手教你如何在Ubuntu 22.04服务器上部署MinIO&#xff0c;并使用Nginx反向代理和Let’s Encrypt证书进行安全加固。 即使你是新手&#xff0c;也能轻松完成&#xf…

EasyUI弹出框行编辑,通过下拉框实现内容联动

EasyUI弹出框行编辑&#xff0c;通过下拉框实现内容联动 需求 实现用户支付方式配置&#xff0c;当弹出框加载出来的时候&#xff0c;显示用户现有的支付方式&#xff0c;datagrid的第一列为conbobox,下来选择之后实现后面的数据直接填充&#xff1b; 点击新增&#xff1a;新…

【神经科学学习笔记】基于分层嵌套谱分割(Nested Spectral Partition)模型分析大脑网络整合与分离的学习总结

一、前言 1.学习背景 最近在学习脑网络分析方法时&#xff0c;笔者偶然读到了一篇发表在Physical Review Letters上的文章&#xff0c;文章介绍了一种名为嵌套谱分割(Nested-Spectral Partition, NSP)的方法&#xff0c;用于研究大脑功能网络的分离和整合特性。 传统的脑网络分…

如何优雅处理异常?处理异常的原则

前言 在我们日常工作中&#xff0c;经常会遇到一些异常&#xff0c;比如&#xff1a;NullPointerException、NumberFormatException、ClassCastException等等。 那么问题来了&#xff0c;我们该如何处理异常&#xff0c;让代码变得更优雅呢&#xff1f; 1 不要忽略异常 不知…

海量数据迁移:Elasticsearch到OpenSearch的无缝迁移策略与实践

文章目录 一&#xff0e;迁移背景二&#xff0e;迁移分析三&#xff0e;方案制定3.1 使用工具迁移3.2 脚本迁移 四&#xff0e;方案建议 一&#xff0e;迁移背景 目前有两个es集群&#xff0c;版本为5.2.2和7.16.0&#xff0c;总数据量为700T。迁移过程需要不停服务迁移&#…