为何选择Spring AI Alibaba开发智能客服平台?

0 前言

本文来看如何使用Spring AI Alibaba构建Agent应用。

1 需求

智能客服平台,可帮助用户完成机票预定、问题解答、机票改签、取消等动作,具体要求:

  • 基于 AI 大模型与用户对话,理解用户自然语言表达的需求
  • 支持多轮连续对话,能在上下文中理解用户意图
  • 理解机票操作相关的术语与规范并严格遵守,如航空法规、退改签规则等
  • 在必要时可调用工具辅助完成任务

2 技术架构

2.1 接入AI大模型

不过是用 Spring Boot 开发普通 Java 应用,要能持续接收用户提问,解决机票相关问题,叫它Agent应用是因为这应用可与 AI 交互,由 AI 帮助应用理解用户问题并为用户做决策,简化分解后的架构:

2.2 利用RAG增加机票退改签规则

应用由 AI 模型理解用户问题,决策下一步动作、驱动业务流程。但任一通用大模型都能解决机票相关问题吗?依赖模型的决策是可靠的吗?如有用户提出机票改签的诉求,模型一定能很好理解用户意图,没疑问。但:

  • 它咋知当前用户符不符合退票规则?毕竟每个航空公司改签规则都不同
  • 它咋知改签手续费的规定?在这样一个可能带来经济纠纷、法律风险的应用场景下,AI模型必须要知道改签规则的所有细节,并逐条确认用户信息复合规则后,才能最终作出是否改签的决策

显然,单纯依赖 AI 模型本身不能满足需求,就要用到RAG模式。通过 RAG 将机票退改签相关领域知识输入给应用和 AI 模型,让 AI 结合这些规则与要求辅助决策,增加 RAG 后的架构:

有了RAG,应用才真正成为智能化的机票问题专家,就像一个经公司业务培训的客服代表,既能人性化与用户对话,又能根据规则引导用户行为。

2.3 使用Function Calling执行业务动作

AI Agent可帮应用理解用户需求并决策,但没法代替应用完成决策执行,决策执行还是要由应用自己完成,这点和传统应用无区别,不论智能化的还是预先编排好的应用,都是要由应用本身去调用函数修改数据库记录实现数据持久化。

通过 Spring AI 框架,可将模型的决策转换为对某个具体函数的调用,从而完成机票的最终改签或者退票动作,将用户数据写入数据库,即Function Calling模式。

2.4 使用 Chat Memory 增加多轮对话能力

大模型是无状态的,它看到的只有当前这轮对话的内容。因此若要支持多轮对话效果,需应用每次都将之前对话上下文保留,并与最新问题一并作为 prompt 发送给模型。这时,我们可以利用 Spring AI Alibaba 提供的内置 Conversation Memory 支持,方便的维护对话上下文。

至此,让我们总结在这个智能客服平台应用使用到的

3 Spring AI Alibaba 核心能力

  1. 基本模型对话能力,通过 Chat Model API 与通义模型交互
  2. Prompt 管理能力
  3. Chat Memory 聊天记忆,支持多轮对话
  4. RAG、Vector Store,机票预定、改签、退票等相关规则

4 使用 ChatClient 完成编码

Spring AI Alibaba 不止提供了以上原子能力抽象,还提供了高阶 “智能体” API 抽象 ChatClient,让我们可以非常方便的使用流式 Fluent API 把多个组件组装起来,成为一个AI Agent。

具体使用:

this.chatClient = modelBuilder
        .defaultSystem("""
            您是“Funnair”航空公司的客户聊天支持代理。请以友好、乐于助人且愉快的方式来回复。
             您正在通过在线聊天系统与客户互动。
             在提供有关预订或取消预订的信息之前,您必须始终
             从用户处获取以下信息:预订号、客户姓名。
             在询问用户之前,请检查消息历史记录以获取此信息。
             在更改预订之前,您必须确保条款允许这样做。
             如果更改需要收费,您必须在继续之前征得用户同意。
             使用提供的功能获取预订详细信息、更改预订和取消预订。
             如果需要,可以调用相应函数调用完成辅助动作。
             请讲中文。
             今天的日期是 {current_date}.
          """)
        .defaultAdvisors(
            new PromptChatMemoryAdvisor(chatMemory), // Chat Memory
            new VectorStoreChatMemoryAdvisor(vectorStore)),
            new QuestionAnswerAdvisor(vectorStore, SearchRequest.defaults()), // RAG
            new LoggingAdvisor())
        .defaultFunctions("getBookingDetails", "changeBooking", "cancelBooking") // FUNCTION CALLING

        .build();

这样ChatClient就为我们屏蔽了所有与大模型交互的细节,只需要把ChatClient注入常规的 Spring Bean 就可以为我们的机票应用加入智能化能力了。

5 运行效果

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化

  • 活动&券等营销中台建设

  • 交易平台及数据中台等架构和开发设计

  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化

  • LLM Agent应用开发

  • 区块链应用开发

  • 大数据开发挖掘经验

  • 推荐系统项目

    目前主攻市级软件项目设计、构建服务全社会的应用系统。

参考:

  • 编程严选网

    本文由博客一文多发平台 OpenWrite 发布!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/912748.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python学习从0到1 day27 第三阶段 Spark ② 数据计算Ⅰ

人总是会执着于失去的,而又不珍惜现在所拥有的 —— 24.11.9 一、map方法 PySpark的数据计算,都是基于RDD对象来进行的,采用依赖进行,RDD对象内置丰富的成员方法(算子) map算子 功能:map算子…

数据结构合并两个有序链表

数据结构 1.合并两个有序数组代码: 1.合并两个有序数组 这里我们可以创建一个新的对象作为合并后的新链表newHead,而NewHead.next就是我们要返回的头部的位置 在创建一个对象来获取nextHead.next下一个节点来作为我们新链表的起始位置防止我们的头部位置…

动态规划 —— dp 问题-买卖股票的最佳时机含手续费

1. 买卖股票的最佳时机含手续费 题目链接: 714. 买卖股票的最佳时机含手续费 - 力扣(LeetCode)https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-with-transaction-fee/description/ 2. 算法原理 状态表示:以某一个…

利用pythonstudio写的PDF、图片批量水印生成器,可同时为不同读者生成多组水印

现在很多场合需要将PDF或图片加水印,本程序利用pythonstudio编写。 第一步 界面 其中: LstMask:列表框 PopupMenu:PmnMark LstFiles:列表框 PopupMenu:PmnFiles OdFiles:文件选择器 Filter:PDF文件(.PDF)|.PDF|图像文件(.JPG)|.JPG|图像文件(.png…

基于python深度学习技术矩阵分解的推荐系统,通过学习隐含特征,实现推荐

实现了一个基于矩阵分解的推荐系统,用于预测用户对电影的评分。具体来说,该程序通过TensorFlow构建和训练一个模型,来学习用户和电影之间的隐含特征,并根据这些特征预测评分。以下是代码的主要功能和步骤的详细描述: …

[vulnhub] DarkHole: 1

https://www.vulnhub.com/entry/darkhole-1,724/ 端口扫描主机发现 探测存活主机,184是靶机 nmap -sP 192.168.75.0/24 Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-11-08 09:59 CST Nmap scan report for 192.168.75.1 Host is up (0.00027s latency). MA…

4.1 WINDOWS XP,ReactOS对象与对象目录----1

系列文章目录 文章目录 系列文章目录4.1 对象与对象目录OBJECT_HEADERObpLookupEntryDirectory()NtCreateTimer() 4.1 对象与对象目录 “对象(Object)”这个词现在大家都已耳熟能详了,但是对象到底是什么呢?广义地说,对象就是“目标”,行为…

STM32H503开发(2)----STM32CubeProgrammer烧录

STM32H503开发----2.STM32CubeProgrammer烧录 概述硬件准备视频教学样品申请源码下载参考程序自举模式BOOT0设置UART烧录USB烧录 概述 STM32CubeProgrammer (STM32CubeProg) 是一款用于编程STM32产品的全功能多操作系统软件工具。 它提供了一个易用高效的环境,通过…

“双十一”电商狂欢进行时,在AI的加持下看网易云信IM、RTC如何助力商家!

作为一年一度的消费盛会,2024年“双十一”购物狂欢节早已拉开帷幕。蹲守直播间、在主播热情介绍中点开链接并加购,也已成为大多数人打开“双11”的重要方式。然而,在这火热的购物氛围背后,主播频频“翻车”、优质主播稀缺、客服响…

debian系统安装qt的时候 显示xcb相关文件缺失

如果是安装之后的问题 我们可以选择使用ldd的命令查看当前依赖的so那些文件确实 ldd /home/yinsir/Qt/5.15.2/gcc_64/plugins/platforms/libqxcb.so 本人在进行打包的时候 出现则会个报错 ERROR: ldd outputLine: “libxcb-util.so.1 > not found” ERROR: for binary: “/…

A023-基于SpringBoot的冷链物流系统的设计与实现

🙊作者简介:在校研究生,拥有计算机专业的研究生开发团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹 赠送计算机毕业设计600…

【数据分析】如何构建指标体系?

有哪些指标体系搭建模型?五个步骤教你从0开始搭建指标体系 一、企业指标体系搭建存在什么问题 许多企业在搭建数据指标体系时遇到了诸多难题,如问题定位不准确、数据采集不完整、目标不一致、报表无序、指标覆盖不全面以及报表价值未充分利用等。 1、…

C++20 概念与约束(1)—— SFINAE

1、从模板说起 众所周知,C在使用模板时,如果有多个模板匹配,则编译器会选择最匹配的一个模板进行实例化,这也正是模板特化和偏特化的依据。 根据上面这张图中的现象,列举下面几个示例: 1、不存在模板的情况…

基于Spring Boot的在线装修管理系统的设计与实现,LW+源码+讲解

摘 要 互联网发展至今,无论是其理论还是技术都已经成熟,而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播,搭配信息管理工具可以很好地为人们提供服务。针对信息管理混乱,出错率高,信息安全性差&#…

原生鸿蒙应用市场:赋能开发者全生命周期服务体验

文章目录 背景自动化检测前移:早发现,早解决技术细节:静态代码分析与兼容性测试应用场景 按需加载:优化性能,提升用户体验技术细节:模块化与懒加载实现应用场景 应用加密:保护应用代码安全&…

RDD 算子全面解析:从基础到进阶与面试要点

Spark 的介绍与搭建:从理论到实践_spark环境搭建-CSDN博客 Spark 的Standalone集群环境安装与测试-CSDN博客 PySpark 本地开发环境搭建与实践-CSDN博客 Spark 程序开发与提交:本地与集群模式全解析-CSDN博客 Spark on YARN:Spark集群模式…

配置多公钥在多平台使用Git

步骤很详细,直接上教程 当我们想在不同远程仓库平台配置不同公钥时会发现不进行额外配置是不行的,只会使用默认的公钥,本篇文章便是为了解决这个问题 进入C:\Users\[你的用户名]\.ssh文件夹 如果没有这个文件夹可以新建一下 在上述文件夹新建…

如何在 Android 上增加 SELinux 权限

SELinux(Security-Enhanced Linux)是一种强制访问控制(MAC)机制,它为 Android 系统提供了额外的安全层。通过 SELinux,系统管理员可以定义细粒度的安全策略,限制进程对文件、网络和其他资源的访…

新能源汽车与公共充电桩布局

近年来,全球范围内对新能源汽车产业的推动力度不断增强,中国新能源汽车市场也呈现蓬勃发展的势头,在政策与市场的共同推动下,新能源汽车销量持续增长。然而,据中国充电联盟数据显示,充电基础设施建设滞后于新能源汽车数量增长的现状导致充电桩供需不平衡,公共充电桩服务空白区域…

中科大:LLM知识遗忘评估与优化

📖标题:A Closer Look at Machine Unlearning for Large Language Models 🌐来源:arXiv, 2410.08109 🌟摘要 🔸大型语言模型(LLM)可能会记住敏感或受版权保护的内容,从…