Spring AI 核心概念

SpringAI 核心概念

  • 1. Models
  • 2. Prompts
  • 3. Prompt Templates
  • 4. Embeddings
  • 5. Tokens
  • 6. Structured Output
  • 7. Bringing Your Data & APIs to the AI Model
    • 7.1 Retrieval Augmented Generation
    • 7.2 Function Calling

1. Models

AI 模型是用于处理和生成信息的算法,通常模仿人类的认知功能。通过从大型数据集中学习模式和见解,这些模型可以做出预测、文本、图像或其他输出,从而增强各行各业的各种应用。

人工智能模型有很多种,每种模型都适用于特定的用例。虽然 ChatGPT 及其生成式人工智能功能通过文本输入和输出吸引了用户,但许多模型和公司都提供多样化的输入和输出。在 ChatGPT 之前,许多人都对文本到图像的生成模型着迷,例如 Midjourney 和 Stable Diffusion。

下表根据输入和输出类型对几种模型进行了分类:

在这里插入图片描述Spring AI 目前支持将输入和输出处理为语言、图像和音频的模型。上表中的最后一行接受文本作为输入并输出数字,这通常称为嵌入文本,表示 AI 模型中使用的内部数据结构。Spring AI 支持嵌入以实现更高级的用例。

GPT 等模型的独特之处在于其预训练特性,正如 GPT 中的“P”所示——Chat Generative Pre-trained Transformer。这种预训练功能将 AI 转变为通用的开发工具,不需要广泛的机器学习或模型训练背景。

2. Prompts

提示是基于语言的输入的基础,可指导 AI 模型产生特定输出。对于熟悉 ChatGPT 的人来说,提示可能看起来只是输入到对话框中并发送到 API 的文本。然而,它包含的内容远不止这些。在许多 AI 模型中,提示的文本不仅仅是一个简单的字符串。

ChatGPT 的 API 在一个提示中有多个文本输入,每个文本输入都被分配一个角色。例如,系统角色会告诉模型如何表现并设置交互的上下文。还有用户角色,通常是来自用户的输入。

制作有效的提示既是一门艺术,也是一门科学。ChatGPT 是为人类对话而设计的。这与使用 SQL 之类的东西“提问”有很大不同。人们必须与人工智能模型进行交流,就像与另一个人交谈一样。

3. Prompt Templates

创建有效的提示包括建立请求的上下文并用特定于用户输入的值替换请求的各部分。

此过程使用传统的基于文本的模板引擎来快速创建和管理。Spring AI为此使用了 OSS 库StringTemplate 。

例如,考虑简单的提示模板:

Tell me a {adjective} joke about {content}.

在 Spring AI 中,提示模板可以比作 Spring MVC 架构中的“视图”。java.util.Map提供一个模型对象,用于填充模板中的占位符。“渲染”后的字符串将成为提供给 AI 模型的提示内容。

发送给模型的提示的具体数据格式存在相当大的差异。提示最初只是简单的字符串,后来演变为包含多条消息,其中每条消息中的每个字符串代表模型的不同角色。

4. Embeddings

嵌入是文本、图像或视频的数字表示,用于捕捉输入之间的关系。

嵌入的工作原理是将文本、图像和视频转换为浮点数数组(称为向量)。这些向量旨在捕捉文本、图像和视频的含义。嵌入数组的长度称为向量的维数。

通过计算两段文本的向量表示之间的数值距离,应用程序可以确定用于生成嵌入向量的对象之间的相似性。

在这里插入图片描述
嵌入在实际应用中尤其重要,例如检索增强生成 (RAG) 模式。它们可以将数据表示为语义空间中的点,这类似于欧几里得几何的二维空间,但在更高的维度上。这意味着,就像欧几里得几何中平面上的点可以根据其坐标而接近或远离一样,在语义空间中,点的接近度反映了含义的相似性。关于相似主题的句子在这个多维空间中的位置更近,就像图上彼此靠近的点一样。这种接近度有助于文本分类、语义搜索甚至产品推荐等任务,因为它允许 AI 根据相关概念在这个扩展的语义景观中的“位置”来辨别和分组相关概念。你可以把这个语义空间想象成一个向量。

5. Tokens

Tokens是 AI 模型工作原理的基石。输入时:模型将单词转换为Tokens。输出时:它们将Tokens转换回单词。

在英语中,一个Token大约对应一个单词的 75%。,莎士比亚的全集总共约 90 万个单词,翻译过来大约有 120 万个Tokens。

在这里插入图片描述
也许更重要的是Tokens = 金钱。在托管 AI 模型的背景下,您的费用由使用的Tokens数量决定。输入和输出都会影响总Tokens数量。

此外,模型还受到 token 限制,这会限制单个 API 调用中处理的文本量。此阈值通常称为“上下文窗口”。模型不会处理超出此限制的任何文本。

例如,ChatGPT3 的Tokens限制为 4K,而 GPT4 则提供不同的选项,例如 8K、16K 和 32K。Anthropic 的 Claude AI 模型的Tokens限制为 100K,而 Meta 的最新研究则产生了 1M Tokens限制模型。

要使用 GPT4 总结莎士比亚全集,您需要制定软件工程策略来切分数据并在模型的上下文窗口限制内呈现数据。Spring AI 项目可以帮助您完成此任务。

6. Structured Output

即使您要求回复为 JSON, AI 模型的输出通常也会以 java.lang.String的形式出现。它可能是正确的 JSON,但它不是 JSON 数据结构。它只是一个字符串。此外,在提示中要求“输入 JSON”并非 100% 准确。

这种复杂性导致了一个专门领域的出现,涉及创建提示以产生预期的输出,然后将生成的简单字符串转换为可用于应用程序集成的数据结构。结构化输出转换采用精心设计的提示,通常需要与模型进行多次交互才能实现所需的格式。

在这里插入图片描述

7. Bringing Your Data & APIs to the AI Model

GPT 3.5/4.0 数据集仅延续到 2021 年 9 月。因此,该模型表示它不知道需要该日期之后知识的问题的答案。一个有趣的小知识是,这个数据集大约有 650GB。

有三种技术可以定制 AI 模型以整合您的数据:

  • Fine Tuning(微调):这种传统的机器学习技术涉及定制模型并更改其内部权重。然而,对于机器学习专家来说,这是一个具有挑战性的过程,而且由于 GPT 等模型的大小,它极其耗费资源。此外,有些模型可能不提供此选项。

  • Prompt Stuffing(提示填充):一种更实用的替代方案是将您的数据嵌入提供给模型的提示中。考虑到模型的令牌限制,需要使用技术在模型的上下文窗口中呈现相关数据。这种方法俗称“填充提示”。Spring AI 库可帮助您基于“填充提示”技术(也称为检索增强生成 (RAG))实现解决方案。

  • Function Calling(函数调用):允许注册自定义的用户函数,将大型语言模型连接到外部系统的 API。Spring AI 大大简化了支持函数调用所需编写的代码。

7.1 Retrieval Augmented Generation

检索增强生成 (RAG) 技术旨在解决将相关数据纳入准确的 AI 模型响应提示的挑战。

该方法涉及批处理样式的编程模型,其中作业从文档中读取非结构化数据,对其进行转换,然后将其写入矢量数据库。从高层次上讲,这是一个 **ETL(提取、转换和加载)**管道。矢量数据库用于 RAG 技术的检索部分。

在将非结构化数据加载到矢量数据库的过程中,最重要的转换之一是将原始文档分割成较小的部分。将原始文档分割成较小部分的过程有两个重要步骤:

  1. 将文档拆分成几部分,同时保留内容的语义边界。例如,对于包含段落和表格的文档,应避免在段落或表格中间拆分文档。对于代码,应避免在方法实现的中间拆分代码。
  2. 将文档的各部分进一步拆分成大小仅为 AI 模型令牌限制的一小部分的部分。

RAG 的下一个阶段是处理用户输入。当用户的问题需要由 AI 模型回答时,问题和所有“类似”的文档片段都会被放入发送给 AI 模型的提示中。这就是使用矢量数据库的原因。它非常擅长查找类似内容。
在这里插入图片描述

  • ETL 管道提供了有关协调从数据源提取数据并将其存储在结构化向量存储中的流程的更多信息,确保在将数据传递给 AI 模型时具有最佳检索格式。

  • ChatClient - RAG解释了如何使用QuestionAnswerAdvisor在您的应用程序中启用 RAG 功能

7.2 Function Calling

大型语言模型 (LLM) 在训练后被冻结,导致知识陈旧,并且无法访问或修改外部数据。

函数调用机制解决了这些缺点。它允许您注册自己的函数,以将大型语言模型连接到外部系统的 API。这些系统可以为 LLM 提供实时数据并代表它们执行数据处理操作。

Spring AI 大大简化了您需要编写的代码以支持函数调用。它为您处理函数调用对话。您可以将函数作为提供@Bean,然后在提示选项中提供该函数的 bean 名称以激活该函数。此外,您可以在单个提示中定义和引用多个函数。

在这里插入图片描述

  1. 执行聊天请求并发送函数定义信息。后者提供name(description例如,解释模型应何时调用该函数)和input parameters(例如,函数的输入参数模式)。

  2. 当模型决定调用该函数时,它将使用输入参数调用该函数并将输出返回给模型。

  3. Spring AI 会为您处理此对话。它将函数调用分派给适当的函数,并将结果返回给模型。

  4. 模型可以执行多个函数调用来检索所需的所有信息。

  5. 一旦获得了所需的所有信息,模型就会生成响应。

文章参考链接:https://docs.spring.io/spring-ai/reference/1.0/concepts.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/910055.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

http请求响应详解

http介绍 http协议: Http”协议称为是“超文本传输协议”(HTTP-Hypertext transfer protocol)。它定义了浏览器怎么向万维网服务器请求万维网文档,以及服务器怎么样把文档传送给浏览器。 https协议: 传统的HTTP协议…

直播系统搭建教程安装说明

需要安装的软件(宝塔【软件商店】中查找安装): 1.PHP7.0 ~ PHP7.3 需要安装的扩展:(宝塔【PHP管理】【安装扩展】中安装) *PDO PHP Extension * MBstring PHP Extension * CURL PHP Extension * Mylsqi PHP Extension * Redis PHP Extension * fileinfo PHP Extension …

redis7学习笔记

文章目录 1. 简介1.1 功能介绍1.1.1 分布式缓存1.1.2 内存存储和持久化(RDBAOF)1.1.3 高可用架构搭配1.1.4 缓存穿透、击穿、雪崩1.1.5 分布式锁1.1.6 队列 1.2 数据类型StringListHashSetZSetGEOHyperLogLogBitmapBitfieldStream 2. 命令2.1 通用命令copydeldumpexistsexpire …

51c~C语言~合集1

我自己的原文哦~ https://blog.51cto.com/whaosoft/12428240 一、C语言和C的区别 ​ C语言虽说经常和C在一起被大家提起,但可千万不要以为它们是一个东西。现在我们常用的C语言是C89标准,C是C99标准的。C89就是在1989年制定的标准,如今最新…

【论文解读】EdgeYOLO:一种边缘实时目标检测器(附论文地址)

论文地址:https://arxiv.org/pdf/2302.07483 这篇文章的标题是《EdgeYOLO: An Edge-Real-Time Object Detector》,由中国北京理工大学的Shihan Liu、Junlin Zha、Jian Sun、Zhuo Li和Gang Wang共同撰写。这篇论文提出了一个基于最新YOLO框架的高效、低复…

基于SSM的企业管理系统(源码+lw+调试+技术指导)

项目描述 临近学期结束,还是毕业设计,你还在做java程序网络编程,期末作业,老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。这里根据疫情当下,你想解决的问…

【MyBatis源码】CacheKey缓存键的原理分析

文章目录 Mybatis缓存设计缓存KEY的设计CacheKey类主体CacheKey组成CacheKey如何保证缓存key的唯一性 Mybatis缓存设计 MyBatis 每秒过滤众多数据库查询操作,这对 MyBatis 缓存键的设计提出了很高的要求。MyBatis缓存键要满足以下几点。 无碰撞:必须保证…

Mac M1 Docker创建Rocketmq集群并接入Springboot项目

文章目录 前言Docker创建rocketmq集群创建rocketmq目录创建docker-compose.yml新增broker.conf文件启动容器 Springboot 接入 rocketmq配置maven依赖修改appplication.yml新增消息生产者新增消费者测试发送消息 总结 前言 最近公司给配置了一台mac,正好有时间给装一…

pycharm小游戏贪吃蛇及pygame模块学习()

由于代码量大,会逐渐发布 一.pycharm学习 在PyCharm中使用Pygame插入音乐和图片时,有以下这些注意事项: 插入音乐: - 文件格式支持:Pygame常用的音乐格式如MP3、OGG等,但MP3可能需额外安装库&#xf…

使用Rust实现http/https正向代理

相关库的安装 利用vcpkg安装openssl库 vcpkg install openssl:x64-windows并设置openssl库位置的环境变量 $Env:OPENSSL_DIR"D:/vcpkg/packages/openssl_x64-windows/"安装openssl软件,因为需要利用openssl生成自签名证书 Cargo依赖 [dependencies] …

基于MATLAB的运动车辆跟踪检测系统

一、课题介绍 本设计为基于MATLAB的运动车辆跟踪检测系统。带有一个GUI界面,可以读取高速路车流视频,读取视频信息,并且统计每辆车经过左车道还是右车道,车速和平均速度检测,以及某一帧下的车流密度,以及最…

微深节能 环形运动机械定位控制系统 格雷母线

微深节能的环形运动机械定位控制系统中的格雷母线是一种高精度、无磨损的非接触式位置检测系统,特别适用于环形运动机械的定位控制。该系统主要由格雷母线、天线箱、电气柜等关键部件组成,其核心在于格雷母线这一特殊的编码线。 格雷母线的工作原理是通过…

【359】基于springboot的智慧草莓基地管理系统

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本智慧草莓基地管理系统就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据…

如何利用 Python 的爬虫技术获取淘宝天猫商品的价格信息?

以下是使用 Python 的爬虫技术获取淘宝天猫商品价格信息的两种常见方法: 方法一:使用 Selenium 一、环境准备: 安装 selenium 库:在命令行中运行 pip install selenium。下载浏览器驱动:如 ChromeDriver(确…

定时任务——xxl-job原理与实现

摘要 本文详细介绍了分布式任务调度平台xxl-job的原理与实现。xxl-job以其开发迅速、学习简单、轻量级和易扩展的特性被广泛使用。文章概述了xxl-job的核心特性,包括任务的CRUD操作、动态调度、高可用性、弹性扩容缩容、丰富的触发策略、调度过期策略、阻塞处理策略…

TDengine 签约蘑菇物联,改造通用设备工业互联网平台

在当前工业互联网迅猛发展的背景下,企业面临着日益增长的数据处理需求和智能化转型的挑战。通用工业设备的高能耗问题愈发突出,尤其是由这些设备组成的公辅能源车间,亟需更高效的解决方案来提升设备运行效率,降低能源消耗。为此&a…

【业务】支付总结和GP支付功能测试

背景 我个人支付相关内容测试很少(不是你想接什么业务就能接到,都是各方利益博弈以后结果),有些内容也是听听技术会议,看看其他qa的xmind通过只言片语里面做个总结。 支付类型 直连支付 概述:提供支付接…

2024中国国际数字经济博览会:图为科技携明星产品引领数智化潮流

10月24日,全球数智化领域的目光齐聚于中国石家庄正定,一场关于数字经济未来的盛会—2024中国国际数字经济博览会在此拉开帷幕。 云边端算力底座的领航者,图为科技携其明星产品惊艳亮相,期待与您共赴一场数智化的非凡之旅&#xff…

ESP32 gptimer通用定时器初始化报错:assert failed: timer_ll_set_clock_prescale

背景:IDF版本V5.1.2 ,配置ESP32 通用定时器,实现100HZ,占空比50% 的PWM波形。 根据乐鑫官方的IDF指导文档设置内部计数器的分辨率,计数器每滴答一次相当于 1 / resolution_hz 秒。 (ESP-IDF编程指导文档&a…

【Python】强大的正则表达式工具:re模块详解与应用

强大的正则表达式工具:re模块详解与应用 在编程和数据处理中,字符串的处理是不可避免的一项任务。无论是从文本中提取信息、验证数据格式,还是进行复杂的替换操作,正则表达式(Regular Expression,简称Rege…