单片机串口接收状态机STM32

单片机串口接收状态机stm32

前言

项目的芯片stm32转国产,国产芯片的串口DMA接收功能测试不通过,所以要由原本很容易配置的串口空闲中断触发DMA接收数据的方式转为串口逐字节接收的状态机接收数据

两种方式各有优劣,不过我的芯片已经主频跑到72m,对于接收115200波特率的数据,绰绰有余。

给一张图,接收状态机就是设置串口每次接收1byte的数据就触发一次中断,在中断函数里面逐次统计数据,最后把有用的数据包放进缓存区给到处理区

协议图.drawio

1.首先现在cubemx的串口的dma接收关闭,具体配置看截图,然后导出下代码

image

image

image

2.开始配置代码,这里我用的代码编辑器是vscode,个人认为vscode编辑代码+keil调试的方式是最舒服的,有兴趣的可以试试,绝对提一档。

image

先定义一个uint8_t的变量用来接收每次收到的数据,一定注意,只要你是用的cubemx生成的project,在生成的文件下,都有把你改的代码写到/* USER CODE BEGIN 0 */​下面,不然等你下次在cubemx更改底层配置的时候会把你改好的代码擦洗掉。

uint8_t USART1_rxdata = 0;

image

往下滑,找到这个串口1的初始化函数,加这个串口接收中断启动函数

HAL_UART_Receive_IT(&huart1, &USART1_rxdata, 1);

然后我们来到中断c文件下,在串口1中断里增加我们的接收状态机

image

  rec_buff_scan(USART1_rxdata);   
  HAL_UART_Receive_IT(&huart1, &USART1_rxdata, 1); 

这里的rec_buff_scan就是我们定义的函数,因为我的习惯是在我自己创建的文件下写代码,避免更改cube生成的东西,所以文件名可能就不一样,这里就只看代码就好了

首先先把定义全部cv下来,我们协议是[0XAA,0X55,命令包长度,…(命令包内容),校验和高位,校验和底位,的格式,如果你们的不一样就改下RecState里面的变量名

image

#define REC_BUFF_SIZE 100
uint8_t rec_buf_scan[REC_BUFF_SIZE];    // 数据接收缓冲区
uint8_t rec_index = 0;                  // 数据接收索引
extern uint8_t USART1_rxdata;                  // 存储接收的单个字节

// 状态枚举
typedef enum {
    STATE_WAIT_FOR_HEAD1,      // 等待帧头AA
    STATE_WAIT_FOR_HEAD2,      // 等待帧头55
    STATE_WAIT_FOR_LENGTH,     // 等待命令包长度
    STATE_RECEIVE_DATA,        // 接收命令包数据
    STATE_WAIT_FOR_CHECKSUM1,  // 等待校验和字节1
    STATE_WAIT_FOR_CHECKSUM2   // 等待校验和字节2
} RecState;

RecState rec_state = STATE_WAIT_FOR_HEAD1;  // 初始状态
uint8_t packet_length = 0;                  // 数据包长度
uint16_t checksum = 0;  

然后把状态机整段cv,状态机就是把接收部分分成一个个的状态,条件符合就会跳到下一段,最后会在校验和验证整段数据是否接收正常,正常的话就会送入数据处理的函数里面,我这里定义了一个rec_buf_scan[REC_BUFF_SIZE]是跟我之前的接收数据缓存区做兼容而已,你们可以只导入数据包的内容,不需要把头和校验和导入,这里其实就是我懒了嘻嘻

我这里的处理其实你们不用借鉴的 ,直接在STATE_WAIT_FOR_CHECKSUM2状态判断校验和成功后,把接收成功flag=true;然后在你另外的处理函数就可以处理数据包了,这里的memcpy一下,也是很有必要的,我们的处理缓存和接收缓存一定要区分开来,因为没有自锁,所以只能在成功的时候把接受的数据塞入处理缓存,至于我这里为什么塞了全部数据而不是只有数据包,主要是配合我以前的处理,无需借鉴,总之你上班就明白我的难处,要改来改去还要兼容是很麻烦的事情

image

void rec_buff_scan(uint8_t byte) {
    switch (rec_state) {
        case STATE_WAIT_FOR_HEAD1:
            if (byte == 0xAA) {
                rec_state = STATE_WAIT_FOR_HEAD2;
                rec_index = 0;  // 重置接收索引
                checksum = 0;   // 重置校验和
                rec_buf_scan[rec_index++] = byte;//可以不用导入
            }
            break;

        case STATE_WAIT_FOR_HEAD2:
            if (byte == 0x55) {
                rec_state = STATE_WAIT_FOR_LENGTH;
                rec_buf_scan[rec_index++] = byte;//可以不用导入
            } else {
                rec_state = STATE_WAIT_FOR_HEAD1;
            }
            break;

        case STATE_WAIT_FOR_LENGTH:
            packet_length = byte;
            rec_buf_scan[rec_index++] = byte;//可以不用导入
            rec_state = STATE_RECEIVE_DATA;
        
            break;

        case STATE_RECEIVE_DATA:
            if (rec_index-3 < packet_length) {//这里if里面的条件把-3去掉 
                rec_buf_scan[rec_index++] = byte;
            }
            if (rec_index-3 == packet_length) {//这里if里面的条件把-3去掉 
                checksum = Frame_CalculationChecksum(&rec_buf_scan[3], packet_length);  // 计算校验和
                rec_state = STATE_WAIT_FOR_CHECKSUM1;
            }
            break;

        case STATE_WAIT_FOR_CHECKSUM1:
            if (byte == ((checksum >> 8) & 0xFF)) {
                rec_state = STATE_WAIT_FOR_CHECKSUM2;
                rec_buf_scan[rec_index++] = byte;//可以不用导入
            } else {
                rec_state = STATE_WAIT_FOR_HEAD1;
            }
            break;

        case STATE_WAIT_FOR_CHECKSUM2:
            if (byte == (checksum & 0xFF)) {//这里做你自己的处理就好了 ,程序跑到这里就已经验证通过了
            	rec_buf_scan[rec_index++] = byte;//可以不用导入
                memcpy(&rec_buff[0], &rec_buf_scan[0], rec_index);
                Device_data.device_state = JUDGE_FLAG;
                Data_queue_rx.Interrupt_Len = rec_index;
            }
            // 无论校验是否通过,回到初始状态
            rec_state = STATE_WAIT_FOR_HEAD1;
            break;
    }
}

用到的Frame_CalculationChecksum函数是校验和计算函数,具体操作就是把接收的数据需要校验的那一段的第一个元素地址放进去,把数据包长度放进去,他会算完把结果返回,我这里就是简单的数据包加和校验

uint16_t Frame_CalculationChecksum(uint8_t *pData, uint8_t u8Length)
{
    uint16_t u16check_sum = 0;
    uint8_t i;

    for (i = 0; i < u8Length; i++)
    {
        u16check_sum = u16check_sum + pData[i];
    }

    return u16check_sum;
}

这样基本上就把接收状态机整完了,可以仿真下试试看。

3.仿真测试

可以看到断点在第二步的时候0xaa已经存入数据缓存去了

image

同理我们直接看到接收成功这里打断点,可以看到我们在把接收成功时,已经把所有数据都塞进处理缓存区了。这里再严谨点最好是在移完数据后把接收缓存清零一下,但是不清也不影响。

image

image

4.小结

串口中断状态机是最基本的协议解析接收方式,作为一个嵌入式人员这个你必须要学会的,写法不限制,但是流程就是跟我的差不多的,具体根据协议来定的。

这种接收方式适合没有dma外设的单片机比如51单片机,国产单片机,在项目开发完成进行降本的时候也是可能会改到这种方式的,如果有不规范的地方请留言,我会更改。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/908680.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Android Studio 安装过程

以前用 Eclipse 开发&#xff0c;最近尝试 Android Studio 开发&#xff0c;发现 Android Studio 比 Eclipse 速度快多了&#xff0c;下面是安装 Android Studio 过程日志。 Gradle 下载地址&#xff1a;https://services.gradle.org/distributions/ https://developer.andro…

github.io出现的问题及解决方案

1. 你的连接不是专用连接 放假回家后打开自己的博客&#xff0c;发现无法打开博客&#xff0c;一开始以为是调样式时不小心搞坏了&#xff0c;打开别人的githunb.io博客发现都会出问题&#xff0c;并且用手机不连接wifi可以正常打开 解决办法&#xff1a; 方法一&#xff1a; …

商场应急管理措施和预案|基于springboot+vue的大型商场应急预案管理系统(源码+数据库+文档)

商场应急管理系统 目录 基于springbootvue的大型商场应急预案管理系统 一、前言 二、系统设计 三、系统功能设计 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a; 博主介绍&#xff1a;✌️大厂码农|毕设布道师&…

【ACM出版,EI稳定检索】2024年人工智能、数字媒体技术与交互设计国际学术会议(ICADI 2024,11月29-12月1日)

2024年人工智能、数字媒体技术与交互设计国际学术会议&#xff08;ICADI 2024) 2024 International Conference on Artificial Intelligence, Digital Media Technology and Interaction Design 官方信息 会议官网&#xff1a;www.icadi.net 2024 International Conference o…

【Linux】命令行参数 | 环境变量

&#x1fa90;&#x1fa90;&#x1fa90;欢迎来到程序员餐厅&#x1f4ab;&#x1f4ab;&#x1f4ab; 主厨&#xff1a;邪王真眼 主厨的主页&#xff1a;Chef‘s blog 所属专栏&#xff1a;青果大战linux 总有光环在陨落&#xff0c;总有新星在闪烁 前几天在搞硬件&…

Stable diffusion 3.5本地运行环境配置记录

1.环境配置 创建虚环境 conda create -n sd3.5 python3.10Pytorch(>2.0) conda install pytorch2.2.2 torchvision0.17.2 torchaudio2.2.2 pytorch-cuda12.1 -c pytorch -c nvidiaJupyter能使用Anaconda虚环境 conda install ipykernel python -m ipykernel install --user …

CODESYS可视化星三角降压启动程序控制电气动画图

#一个用CODESYS可视化做的星三角降压启动程序控制电气动画图# 前言: 关于星三角降压启动控制,作为电气行业入门的必备知识点,涉及到电机本身特性导致的电压,电流(转矩),功率和转速等一系列的关系和变化,以及星型和三角形的绕组方式。本篇我们使用CODESYS结合程序和可视…

安装fpm,解决*.deb=> *.rpm

要从生成 .deb 包转换为 .rpm 包&#xff0c;可以按照以下步骤修改打包脚本 1. 使用 fpm 工具 fpm 是一个强大的跨平台打包工具&#xff0c;可以将 .deb 包重新打包成 .rpm&#xff0c;也可以直接从源文件打包成 .rpm。 安装 fpm sudo apt-get install ruby-dev sudo gem in…

C#的Event事件示例小白级剖析

1、委托Delegate 首先说一下delegate委托&#xff0c;委托是将方法作为参数进行传递。 // 定义了一个委托类型public delegate void MyDelegate(int num);// 定义了一个啥也不干的委托实例public MyDelegate m_delegate _ > {};// 定义了一个和委托相同格式的方法public …

力扣排序350题 两个元组的交集2

题目&#xff1a; 给你两个整数数组 nums1 和 nums2 &#xff0c;请你以数组形式返回两 数组的交集。返回结果中每个元素出现的次数&#xff0c;应与元素在两个 数组中都出现的次数一致&#xff08;如果出现次数不一致&#xff0c;则考虑取 较小值&#xff09;。可以不考虑输出…

善用Git LFS来降低模型文件对磁盘的占用

将讲一个实际的例子&#xff1a;对于模型文件&#xff0c;动辄就是好几个G&#xff0c;而有的仓库更是高达几十G&#xff0c;拉一个仓库到本地&#xff0c;稍不注意直接磁盘拉满都有可能。 比如&#xff1a;meta-llama-3.1-8b-instruct&#xff0c;拉到本地后发现居然占用了60G…

CentOS 磁盘扩容

1. 查看要扩展的磁盘 df -h这个就是要扩展的磁盘空间&#xff0c;记住名称&#xff0c;后面会用到 2. 查看所有磁盘信息 fdisk -llsblk可以发现&#xff0c;500G 的硬盘已经安装到服务器但是没被使用&#xff0c;此时需要操作这块硬盘 3. 创建分区 fdisk /dev/vdb根据流程…

js中怎么把excel和pdf文件转换成图片打包下载

index.html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>文件转图片工具</title><!-- 本…

【JavaEE初阶 — 多线程】Thread类的方法&线程生命周期

目录 1. start() (1) start() 的性质 (2) start() 和 Thread类 的关系 2. 终止一个线程 (1)通过共享的标记结束线程 1. 通过共享的标记结束线程 2. 关于 lamda 表达式的“变量捕获” (2) 调用interrupt()方法 1. isInterrupted() 2. currentThread() …

Metasploit渗透测试之在云服务器中使用MSF

概述 随着云计算的发展&#xff0c;对基于云的应用程序、服务和基础设施的测试也在不断增加。在对云部署进行渗透测试时&#xff0c;最大的问题之一是共享所有权。过去&#xff0c;在进行渗透测试时&#xff0c;企业会拥有网络上的所有组件&#xff0c;我们可以对它们进行全部…

2016年7月和8月NASA的气候成像(ATom)-1飞行活动期间测量的黑碳(BC)质量混合比(单位为ng BC / kg空气)

目录 简介 摘要 代码 引用 网址推荐 知识星球 机器学习 简介 ATom: Black Carbon Mass Mixing Ratios from ATom-1 Flights 该数据集提供了在2016年7月和8月NASA的气候成像&#xff08;ATom&#xff09;-1飞行活动期间测量的黑碳&#xff08;BC&#xff09;质量混合比&…

关于各链 Meme Launchpad

随着Web3生态的迅猛发展&#xff0c;区块链领域诞生了大量创意无限的meme项目&#xff0c;逐渐引起了广泛关注。这些meme项目不仅展示了加密社区的活力与创造力&#xff0c;也为投资者提供了新的机会和玩法。 然而&#xff0c;meme项目的快速崛起也带来了筛选优质项目和发现市场…

C语言 | Leetcode C语言题解之第537题复数乘法

题目&#xff1a; 题解&#xff1a; bool parseComplexNumber(const char * num, int * real, int * image) {char *token strtok(num, "");*real atoi(token);token strtok(NULL, "i");*image atoi(token);return true; };char * complexNumberMulti…

C# 日志框架 NLog、log4net 和 Serilog对比

文章目录 前言NLog、log4net 和 Serilog 三个框架的详细对比:一、NLog优点:缺点:二、 log4net优点缺点三、Serilog优点缺点四、Serilog使用举例总结前言 NLog、log4net 和 Serilog 三个框架的详细对比: NLog、log4net 和 Serilog 是三个非常流行的 .NET 日志框架,它们各自…

助力风力发电风机设备智能化巡检,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建无人机巡检场景下风机叶片缺陷问题智能化检测预警模型

在全球能源转型的大潮中&#xff0c;清洁环境能源的发展已成为各国关注的焦点。风力发电作为其中的佼佼者&#xff0c;以其可再生、无污染的特点&#xff0c;受到了广泛的青睐。然而&#xff0c;风力发电设施大多建于人迹罕至的地区&#xff0c;设备庞大且复杂&#xff0c;其维…