助力风力发电风机设备智能化巡检,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建无人机巡检场景下风机叶片缺陷问题智能化检测预警模型

在全球能源转型的大潮中,清洁环境能源的发展已成为各国关注的焦点。风力发电作为其中的佼佼者,以其可再生、无污染的特点,受到了广泛的青睐。然而,风力发电设施大多建于人迹罕至的地区,设备庞大且复杂,其维护与管理成为了一个亟待解决的问题。传统的巡检方式不仅效率低下,且存在诸多安全隐患,无法满足现代风电场管理的需求。在此背景下,无人机+AI智能化检测模型应运而生,为风力发电设施的巡检工作带来了革命性的改变。传统的风力发电设施巡检依赖于人工进行,工程人员需要定期攀爬到高大的风车塔架上,对叶片、轮轴等关键部件进行仔细检查。这种作业方式不仅耗时费力,而且受天气、地形等条件限制,往往无法按计划进行。同时,人工巡检还存在一定的安全隐患,特别是在恶劣的天气条件下,巡检人员的生命安全无法得到充分保障。此外,高昂的人工成本也是传统巡检方式的一大痛点。无人机技术的快速发展为风力发电设施的巡检提供了新的解决方案。无人机具有灵活、便捷、易操作的特点,能够轻松穿越复杂地形,到达人工难以触及的区域。通过搭载高清摄像头和传感器,无人机可以对风力发电设施进行全面、细致的巡检,收集大量的图像和数据信息。然而,单纯的无人机巡检仍存在一定的局限性。海量的图像数据需要人工进行筛选和分析,这不仅耗时耗力,而且容易遗漏关键信息。因此,引入AI智能化检测模型成为了提升巡检效率的关键。通过目标检测、图像识别等先进算法,AI模型能够对无人机采集的图像数据进行快速、准确的分析,自动识别出叶片裂纹、腐蚀、污垢等异常情况。一旦发现异常,AI模型会立即发出预警信息,并将问题位置、严重程度等信息发送到平台端,便于管理人员进行后续处理。

在实际应用中,无人机+AI智能化检测模型已经取得了显著的成效。通过定期巡航巡检,无人机能够及时发现风力发电设施中的潜在问题,避免了因设备故障导致的停电和维修成本。同时,智能化的检测模型还能够大幅提高巡检效率,降低人工成本。工程人员无需再亲自攀爬到风车塔架上进行巡检,只需在地面通过远程操作无人机即可完成相关工作。这不仅减轻了工作强度,还降低了安全风险。此外,智能化巡检还能够实现全天候作业。不受天气、地形等条件限制,无人机可以在任何时间、任何地点进行巡检工作。这大大提高了风力发电设施的可靠性和稳定性,为清洁能源的发展提供了有力保障。

本文正是基于这样的背景思考,想要尝试从实验的角度出发,开发构建无人机巡检场景下的风车叶片缺陷问题智能化检测预警模型,在前面系列博文中我们已经进行了相关的开发实践,感兴趣的话可以自行移步阅读:

《助力风力发电风机设备智能化巡检,基于YOLOv3全系列【tiny/l/spp】参数模型开发构建无人机巡检场景下风机叶片缺陷问题智能化检测预警模型》

《助力风力发电风机设备智能化巡检,基于高精度YOLOv5全系列【n/s/m/l/x】参数模型开发构建无人机巡检场景下风机叶片缺陷问题智能化检测预警模型》

《助力风力发电风机设备智能化巡检,基于YOLOv7全系列【tiny/l/x】参数模型开发构建无人机巡检场景下风机叶片缺陷问题智能化检测预警模型》

本文主要是想要应用YOLOv8全系列的参数模型来开发构建对应的检测模型,首先看下实例效果:

接下来看下实例数据:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

官方项目地址在这里,如下所示:

目前已经收获了将近3.2w的star量,还是很出色的了。

官方提供的基于COCO数据集的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

除此之外还有一套基于Open ImageV7数据集构建得到,如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

除了常规的目标检测任务之外,还有旋转目标检测,如下:

是基于DOTAv1数据集训练得到的。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里我们依次选择n、s、m、l和x五款不同参数量级的模型来进行开发。

这里给出yolov8的模型文件如下:

# Parameters
nc: 5  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

囊括了五款不同参数量级的模型。在训练结算保持相同的参数设置,等待训练完成后我们横向对比可视化来整体对比分析。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

综合实验对比来看:五款不同参数量级的模型最终没有拉开非常明显的间隔,达到了较为相近的效果,其中:n系列模型效果最差,x系列模型效果最优,其余三款模型效果相当,综合考虑最终选择使用s系列的模型作为最终的线上推理模型。

接下来看下s系列模型的结果详情。

【离线推理实例】

【Batch实例】

【F1值曲线】

【Precision曲线】

【Recall曲线】

【训练可视化】

感兴趣的话也都可以自行动手尝试下!本文仅作为抛砖引玉,从实验的角度进行基础的实践开发尝试,距离真正落地应用还有很长的路要走,不过科技发展的趋势就应该是赋能作业生产,提质增效的同时降低安全隐患。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/908650.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RV1126-SDK学习之OSD实现原理

RV1126-SDK学习之OSD实现原理 前言 本文简单记录一下我在学习RV1126的SDK当中OSD绘制的原理的过程。 在学习OSD的过程当中,可能需要补充的基础知识: OSD是什么? BMP图像文件格式大致组成? 图像调色(Palette&#…

BFV/BGV全同态加密方案浅析

本文主要为翻译内容,原文地址:Introduction to the BFV encryption scheme、https://www.inferati.com/blog/fhe-schemes-bgv 之前的一篇博客我们翻译了CKKS全同态加密方案的内容,但该篇上下文中有一些知识要点,作者在BFV/BGV中已…

前端小练习——星辰宇宙(JS没有上限!!!)

前言:在刚开始学习前端的时候,我们会学习到前端三件套中的JavaScript,可能那时候读者没有觉得JavaScript这个语言有多么的牛逼,本篇文章将会使用一个炫酷的案例来刷新你对JavaScript这个语言的认知与理解。 ✨✨✨这里是秋刀鱼不做…

JavaScript 生成二维码

我试过了,这一款js库支持中英文混合。 进入网站后,可以直接点击运行哟~ https://andi.cn/page/621821.html

Vue全栈开发旅游网项目(6)-接口开发

1.景点详情接口开发 1.设计响应数据结构 文件地址:sight/serializers.py 创建类: class SightDetailSerializers(BaseSerializer):#景点详情def to_dict(self):obj self.objreturn {id: obj.id,name: obj.name,desc: obj.desc,img: obj.banner_img.…

【嵌入式】STM32中的SPI通信

SPI是由摩托罗拉公司开发的一种通用数据总线,其中由四根通信线,支持总线挂载多设备(一主多从),是一种同步全双工的协议。主要是实现主控芯片和外挂芯片之间的交流。这样可以使得STM32可以访问并控制各种外部芯片。本文…

微服务系列一:基础拆分实践

目录 前言 一、认识微服务 1.1 单体架构 VS 微服务架构 1.2 微服务的集大成者:SpringCloud 1.3 微服务拆分原则 1.4 微服务拆分方式 二、微服务拆分入门步骤 :以拆分商品模块为例 三、服务注册订阅与远程调用:以拆分购物车为例 3.1 …

密码学简要介绍

密码学是研究编制密码和破译密码的技术科学,它研究密码变化的客观规律,主要包括编码学和破译学两大部分。 一、定义与起源 定义:密码学是研究如何隐密地传递信息的学科,在现代特别指对信息以及其传输的数学性研究,常被…

苄基异喹啉类生物碱的微生物合成-文献精读77

苄基异喹啉类生物碱的微生物合成研究进展及挑战 摘要 微生物发酵是一种经济高效、可持续的生产方式,可替代植物种植和化学合成来生产多种植物来源的药物。苄基异喹啉类生物碱作为植物来源生物碱的典型代表,具有多种重要的生理活性,已成为极具…

Centos安装配置Jenkins

下载安装 注意:推荐的LTS版本对部分插件不适配,直接用最新的版本,jenkins还需要用到git和maven,服务器上已经安装,可查看参考文档[1]、[2],本次不再演示 访问开始使用 Jenkins 下载jenkins 上传至服务器…

【进度猫-注册/登录安全分析报告】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…

【前端基础】盒子模型

目标&#xff1a;掌握盒子模型组成部分&#xff0c;使用盒子模型布局网页区域 01-选择器 结构伪类选择器 基本使用 作用&#xff1a;根据元素的结构关系查找元素。 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8">…

Webserver(2.8)守护进程

目录 守护进程案例 守护进程案例 每隔2s获取系统时间&#xff0c;将这个时间写入到磁盘文件中 #include<stdio.h> #include<sys/stat.h> #include<sys/types.h> #include<unistd.h> #include<fcntl.h> #include<sys/time.h> #include<…

基于SpringBoot+微信小程序+协同过滤算法+二维码订单位置跟踪的农产品销售平台-新

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取项目下载方式&#x1f345; 一、项目背景介绍&#xff1a; “农产品商城”小程序…

Windows 10 安装使用Docker踩过的坑和解决-31/10/2024

目录 环境版本 一、Docker Desktop双击启动没反应&#xff0c;open //./pipe/dockerDesktopLinuxEngine: The system cannot find the file specified. 二、Docker Desktop运行run命令时显示错误HTTP code 500 并且错误大意是服务器拒绝访问 三、Docker Engine stopped/启动…

AG32( MCU + FPGA)实现多串口(15个UART)的应用

AG32 的引脚定义 AG32只有模拟相关的IO是固定的&#xff0c;其它数字IO接口可以任意分配。 QFN-32Pin nameAG32VFxxxKAGRV2KQ321PIN_1IO/RTCIO_GB2PIN_2IO/OSC_INIO3PIN_3IO/OSC_OUTIO4NRSTNRSTNRST5PIN_5IO_ADC_IN12IO6VDDA33VDDA33VDDA337PIN_7IO_WKUP_ADC_IN0_CMP_PA0IO8PI…

CSS基础知识六(浮动的高度塌陷问题及解决方案)

目录 1.浮动高度塌陷概念 2.下面是几种解决高度塌陷的几种方案&#xff1a; 解决方案一&#xff1a; 解决方案二&#xff1a; 解决方案三&#xff1a; 1.浮动高度塌陷概念 在CSS中&#xff0c;高度塌陷问题指的是父元素没有正确地根据其内部的浮动元素或绝对定位元素来计…

014:无人机遥控器操作

摘要&#xff1a;本文详细介绍了无人机遥控器及其相关操作。首先&#xff0c;解释了油门、升降舵、方向舵和副翼的概念、功能及操作方式&#xff0c;这些是控制无人机飞行姿态的关键部件。其次&#xff0c;介绍了美国手、日本手和中国手三种不同的操作模式&#xff0c;阐述了遥…

GitHub | 发布到GitHub仓库并联文件夹的方式

推送到Github 推送步骤如果你只想更新单个文件&#xff0c;只需在第 4 步中指定该文件的路径即可。可能问题一 效果 推送步骤 更新 GitHub 仓库中的文件通常涉及以下步骤&#xff1a; 克隆仓库&#xff1a; 首先&#xff0c;你需要将 GitHub 上的仓库克隆到本地。使用 git …

qt QCloseEvent详解

1、概述 QCloseEvent 是 Qt 框架中用于处理窗口关闭事件的一个类。当用户尝试关闭一个窗口&#xff08;例如&#xff0c;通过点击窗口的关闭按钮&#xff0c;或者通过调用窗口的 close() 方法&#xff09;时&#xff0c;Qt 会生成一个 QCloseEvent 对象&#xff0c;并将其发送…