目录
1.list的介绍
2.list的使用
2.1list的构造
2.2list iterator的使用
2.3list capacity
2.4list element access
2.5list modifers
2.6list的迭代器失效
3.list的模拟实现
4.list与vector的对比
欢迎
1.list的介绍
list的文档介绍
cplusplus.com/reference/list/list/?kw=list
2.list的使用
2.1list的构造
list (size_type n, const value_type& val =
value_type())
|
构造的
list
中包含
n
个值为
val
的
元素
|
list() |
构造空的
list
|
list(const list& x) |
拷贝构造函数
|
list (InputIterator first, InputIterator last)
|
用
[first, last)
区间中的元素构造
list
|
list构造的使用:
void TestList1()
{
list<int> l1; // 构造空的l1
list<int> l2(4, 100); // l2中放4个值为100的元素
list<int> l3(l2.begin(), l2.end()); // 用l2的[begin(), end())左闭右开的区间构造l3
list<int> l4(l3); // 用l3拷贝构造l4
// 以数组为迭代器区间构造l5
int array[] = { 16,2,77,29 };
list<int> l5(array, array + sizeof(array) / sizeof(int));
// 列表格式初始化C++11
list<int> l6{ 1,2,3,4,5 };
// 用迭代器方式打印l5中的元素
list<int>::iterator it = l5.begin();
while (it != l5.end())
{
cout << *it << " ";
++it;
}
cout << endl;
// C++11范围for的方式遍历
for (auto& e : l5)
cout << e << " ";
cout << endl;
}
2.2list iterator的使用
begin+end | 返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器 |
rbegin+rend | 返回死一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的reverse_iterator,即begin位置 |
【注意】1. begin 与 end 为正向迭代器,对迭代器执行 ++ 操作,迭代器向后移动2. rbegin(end) 与 rend(begin) 为反向迭代器,对迭代器执行 ++ 操作,迭代器向前移动
// 注意:遍历链表只能用迭代器和范围for
void PrintList(const list<int>& l)
{
// 注意这里调用的是list的 begin() const,返回list的const_iterator对象
for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it)
{
cout << *it << " ";
// *it = 10; 编译不通过
}
cout << endl;
}
void TestList2()
{
int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
list<int> l(array, array + sizeof(array) / sizeof(array[0]));
// 使用正向迭代器正向list中的元素
auto it = l.begin();
while (it != l.end())
{
cout << *it << " ";
++it;
}
cout << endl;
// 使用反向迭代器逆向打印list中的元素
// list<int>::reverse_iterator rit = l.rbegin();
auto rit = l.rbegin();
while (rit != l.rend())
{
cout << *rit << " ";
++rit;
}
cout << endl;
}
2.3list capacity
empty | 检测list是否为空,是返回true,否则返回false |
size | 返回list中有效节点的个数 |
2.4list element access
front | 返回list的第一个节点中值的引用 |
back | 返回list的最后一个节点值的引用 |
2.5list modifers
push_front | 在list首元素前插入值为val的元素 |
pop_front | 删除list中第一个元素 |
push_back | 在list尾部插入值为val的元素 |
pop_back | 删除list中最后一个元素 |
insert | 在list position位置中插入中为val的元素 |
erase | 删除list position位置的元素 |
clear | 清空list中的有效元素 |
list的插入和删除使用代码演示:
void TestList3()
{
int array[] = { 1, 2, 3 };
list<int> L(array, array + sizeof(array) / sizeof(array[0]));
// 在list的尾部插入4,头部插入0
L.push_back(4);
L.push_front(0);
PrintList(L);
// 删除list尾部节点和头部节点
L.pop_back();
L.pop_front();
PrintList(L);
}
// insert /erase
void TestList4()
{
int array1[] = { 1, 2, 3 };
list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));
// 获取链表中第二个节点
auto pos = ++L.begin();
cout << *pos << endl;
// 在pos前插入值为4的元素
L.insert(pos, 4);
PrintList(L);
// 在pos前插入5个值为5的元素
L.insert(pos, 5, 5);
PrintList(L);
// 在pos前插入[v.begin(), v.end)区间中的元素
vector<int> v{ 7, 8, 9 };
L.insert(pos, v.begin(), v.end());
PrintList(L);
// 删除pos位置上的元素
L.erase(pos);
PrintList(L);
// 删除list中[begin, end)区间中的元素,即删除list中的所有元素
L.erase(L.begin(), L.end());
PrintList(L);
}
// resize/swap/clear
void TestList5()
{
// 用数组来构造list
int array1[] = { 1, 2, 3 };
list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0]));
PrintList(l1);
// 交换l1和l2中的元素
list<int> l2;
l1.swap(l2);
PrintList(l1);
PrintList(l2);
// 将l2中的元素清空
l2.clear();
cout << l2.size() << endl;
}
2.6list的迭代器失效
迭代器失效即迭代器所指向的节点的无 效,即该节点被删除了 。因为 list 的底层结构为带头结点的双向循环链表 ,因此 在 list 中进行插入 时是不会导致 list 的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭 代器,其他迭代器不会受到影响 。
#include <list>
using namespace std;
void TestListIterator1()
{
int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
// 初始化链表l,使用array数组中的元素
list<int> l(array, array + sizeof(array) / sizeof(array[0]));
auto it = l.begin(); // 创建一个迭代器it,指向链表的开头
// 遍历链表
while (it != l.end())
{
// 删除当前it指向的节点
// 这里it已经失效,不能再直接使用
l.erase(it);
++it; // 增加it指向下一个节点,但此时it可能已经无效
}
}
// 改正后的版本
void TestListIterator()
{
int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
// 初始化链表l,使用array数组中的元素
list<int> l(array, array + sizeof(array) / sizeof(array[0]));
auto it = l.begin(); // 创建一个迭代器it,指向链表的开头
// 遍历链表
while (it != l.end())
{
// 删除当前it指向的节点,并返回指向下一个节点的迭代器
// it会被更新为l.erase(it)的返回值,即指向下一个有效节点
it = l.erase(it); // 先删除,然后更新it
}
}
3.list的模拟实现
#pragma once
#include <iostream>
using namespace std;
#include <assert.h>
namespace pzn
{
// List的节点类
template<class T>
struct ListNode
{
ListNode(const T& val = T())
: _prev(nullptr)
, _next(nullptr)
, _val(val)
{}
ListNode<T>* _prev;
ListNode<T>* _next;
T _val;
};
/*
List 的迭代器
迭代器有两种实现方式,具体应根据容器底层数据结构实现:
1. 原生态指针,比如:vector
2. 将原生态指针进行封装,因迭代器使用形式与指针完全相同,因此在自定义的类中必须实现以下方法:
1. 指针可以解引用,迭代器的类中必须重载operator*()
2. 指针可以通过->访问其所指空间成员,迭代器类中必须重载oprator->()
3. 指针可以++向后移动,迭代器类中必须重载operator++()与operator++(int)
至于operator--()/operator--(int)释放需要重载,根据具体的结构来抉择,双向链表可以向前 移动,所以需要重载,如果是forward_list就不需要重载--
4. 迭代器需要进行是否相等的比较,因此还需要重载operator==()与operator!=()
*/
template<class T, class Ref, class Ptr>
class ListIterator
{
typedef ListNode<T> Node;
typedef ListIterator<T, Ref, Ptr> Self;
// Ref 和 Ptr 类型需要重定义下,实现反向迭代器时需要用到
public:
typedef Ref Ref;
typedef Ptr Ptr;
public:
//
// 构造
ListIterator(Node* node = nullptr)
: _node(node)
{}
//
// 具有指针类似行为
Ref operator*()
{
return _node->_val;
}
Ptr operator->()
{
return &(operator*());
}
//
// 迭代器支持移动
Self& operator++()
{
_node = _node->_next;
return *this;
}
Self operator++(int)
{
Self temp(*this);
_node = _node->_next;
return temp;
}
Self& operator--()
{
_node = _node->_prev;
return *this;
}
Self operator--(int)
{
Self temp(*this);
_node = _node->_prev;
return temp;
}
//
// 迭代器支持比较
bool operator!=(const Self& l)const
{
return _node != l._node;
}
bool operator==(const Self& l)const
{
return _node != l._node;
}
Node* _node;
};
template<class Iterator>
class ReverseListIterator
{
// 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的一个类型,而不是静态成员变量
// 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量
// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的
public:
typedef typename Iterator::Ref Ref;
typedef typename Iterator::Ptr Ptr;
typedef ReverseListIterator<Iterator> Self;
public:
//
// 构造
ReverseListIterator(Iterator it)
: _it(it)
{}
//
// 具有指针类似行为
Ref operator*()
{
Iterator temp(_it);
--temp;
return *temp;
}
Ptr operator->()
{
return &(operator*());
}
//
// 迭代器支持移动
Self& operator++()
{
--_it;
return *this;
}
Self operator++(int)
{
Self temp(*this);
--_it;
return temp;
}
Self& operator--()
{
++_it;
return *this;
}
Self operator--(int)
{
Self temp(*this);
++_it;
return temp;
}
//
// 迭代器支持比较
bool operator!=(const Self& l)const
{
return _it != l._it;
}
bool operator==(const Self& l)const
{
return _it != l._it;
}
Iterator _it;
};
template<class T>
class list
{
typedef ListNode<T> Node;
public:
// 正向迭代器
typedef ListIterator<T, T&, T*> iterator;
typedef ListIterator<T, const T&, const T&> const_iterator;
// 反向迭代器
typedef ReverseListIterator<iterator> reverse_iterator;
typedef ReverseListIterator<const_iterator> const_reverse_iterator;
public:
///
// List的构造
list()
{
CreateHead();
}
list(int n, const T& value = T())
{
CreateHead();
for (int i = 0; i < n; ++i)
push_back(value);
}
template <class Iterator>
list(Iterator first, Iterator last)
{
CreateHead();
while (first != last)
{
push_back(*first);
++first;
}
}
list(const list<T>& l)
{
CreateHead();
// 用l中的元素构造临时的temp,然后与当前对象交换
list<T> temp(l.begin(), l.end());
this->swap(temp);
}
list<T>& operator=(list<T> l)
{
this->swap(l);
return *this;
}
~list()
{
clear();
delete _head;
_head = nullptr;
}
///
// List的迭代器
iterator begin()
{
return iterator(_head->_next);
}
iterator end()
{
return iterator(_head);
}
const_iterator begin()const
{
return const_iterator(_head->_next);
}
const_iterator end()const
{
return const_iterator(_head);
}
reverse_iterator rbegin()
{
return reverse_iterator(end());
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
const_reverse_iterator rbegin()const
{
return const_reverse_iterator(end());
}
const_reverse_iterator rend()const
{
return const_reverse_iterator(begin());
}
///
// List的容量相关
size_t size()const
{
Node* cur = _head->_next;
size_t count = 0;
while (cur != _head)
{
count++;
cur = cur->_next;
}
return count;
}
bool empty()const
{
return _head->_next == _head;
}
void resize(size_t newsize, const T& data = T())
{
size_t oldsize = size();
if (newsize <= oldsize)
{
// 有效元素个数减少到newsize
while (newsize < oldsize)
{
pop_back();
oldsize--;
}
}
else
{
while (oldsize < newsize)
{
push_back(data);
oldsize++;
}
}
}
// List的元素访问操作
// 注意:List不支持operator[]
T& front()
{
return _head->_next->_val;
}
const T& front()const
{
return _head->_next->_val;
}
T& back()
{
return _head->_prev->_val;
}
const T& back()const
{
return _head->_prev->_val;
}
// List的插入和删除
void push_back(const T& val)
{
insert(end(), val);
}
void pop_back()
{
erase(--end());
}
void push_front(const T& val)
{
insert(begin(), val);
}
void pop_front()
{
erase(begin());
}
// 在pos位置前插入值为val的节点
iterator insert(iterator pos, const T& val)
{
Node* pNewNode = new Node(val);
Node* pCur = pos._node;
// 先将新节点插入
pNewNode->_prev = pCur->_prev;
pNewNode->_next = pCur;
pNewNode->_prev->_next = pNewNode;
pCur->_prev = pNewNode;
return iterator(pNewNode);
}
// 删除pos位置的节点,返回该节点的下一个位置
iterator erase(iterator pos)
{
// 找到待删除的节点
Node* pDel = pos._node;
Node* pRet = pDel->_next;
// 将该节点从链表中拆下来并删除
pDel->_prev->_next = pDel->_next;
pDel->_next->_prev = pDel->_prev;
delete pDel;
return iterator(pRet);
}
void clear()
{
Node* cur = _head->_next;
// 采用头删除删除
while (cur != _head)
{
_head->_next = cur->_next;
delete cur;
cur = _head->_next;
}
_head->_next = _head->_prev = _head;
}
void swap(bite::list<T>& l)
{
std::swap(_head, l._head);
}
private:
void CreateHead()
{
_head = new Node;
_head->_prev = _head;
_head->_next = _head;
}
private:
Node* _head;
};
}
///
// 对模拟实现的list进行测试
// 正向打印链表
template<class T>
void PrintList(const bite::list<T>& l)
{
auto it = l.begin();
while (it != l.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
4.list与vector的对比
vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及
应用场景不同,其主要不同如下:
vector | list | |
底层结构 | 动态顺序表,一段连续空间 | 带头结点的双向循环链表 |
随机访问 | 支持随机访问,访问某个元素效率O(1) | 不支持随机访问,访问某个元素效率O(N) |
插入和删除 | 任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入是有可能需要增容;增容:开辟新空间拷贝元素,释放旧空间,导致效率更低 | 任意位置插入和删除效率高,不需要搬移元素,时间复杂度O(1) |
空间利用率 | 底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高 | 底层结点动态开辟,小结点容易造成内存碎片,缓存利用率低 |
迭代器 | 原生态指针 | 对原生态指针(结点指针)进行封装 |
迭代器失效 | 在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,使原来迭代器失效,删除时,当前迭代器需要迭代器重新赋值否则会失效 | 插入元素不好导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响 |
使用场景 | 需要高效存储,支持随机访问,不关心插入删除效率 | 大量插入和删除操作,不关心随机访问 |
感谢