计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-22

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-22


目录

文章目录

  • 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-22
    • 目录
    • 1. PoisonedRAG: Knowledge corruption attacks to retrieval-augmented generation of large language models
      • 摘要
      • 创新点
      • 算法模型
      • 文章标题翻译
      • 摘要
      • 创新点
      • 算法模型
      • 实验效果
      • 结论
      • 推荐阅读指数:★★★★☆
    • 2. LLaVA-KD: A Framework of Distilling Multimodal Large Language Models
      • 摘要
      • 研究背景
      • 问题与挑战
      • 如何解决
      • 创新点
      • 算法模型
      • 实验效果
      • 重要数据与结论
      • 推荐阅读指数:★★★★☆
    • 3. Large Language Models Empower Personalized Valuation in Auction
      • 摘要
      • 研究背景
      • 问题与挑战
      • 如何解决
      • 创新点
      • 算法模型
      • 实验效果
      • 重要数据与结论
      • 推荐阅读指数:★★★☆☆
    • 4. REEF: Representation Encoding Fingerprints for Large Language Models
      • 摘要
      • 研究背景
      • 问题与挑战
      • 如何解决
      • 创新点
      • 算法模型
      • 实验效果
      • 重要数据与结论
      • 推荐阅读指数:★★★★☆
    • 5. UCFE: A User-Centric Financial Expertise Benchmark for Large Language Models
      • 摘要
      • 研究背景
      • 问题与挑战
      • 如何解决
      • 创新点
      • 算法模型
      • 实验效果
      • 重要数据与结论
      • 推荐阅读指数:★★★★☆
    • 后记


1. PoisonedRAG: Knowledge corruption attacks to retrieval-augmented generation of large language models

W Zou, R Geng, B Wang, J Jia - arXiv preprint arXiv:2402.07867, 2024
在这里插入图片描述
PoisonedRAG: 针对大型语言模型增强检索生成的知识腐败攻击

摘要

这篇论文探讨了大型语言模型(LLMs)在实际应用中的局限性,如知识更新不及时和产生幻觉(hallucination)等问题。为了缓解这些问题,研究者们提出了一种名为检索增强生成(RAG)的技术。然而,现有的研究主要集中在提高RAG的准确性或效率上,对其安全性的探索较少。本文提出了一种名为PoisonedRAG的知识腐败攻击,通过在RAG系统的知识数据库中注入恶意文本,诱导LLM生成攻击者选择的目标答案。研究者们将这个问题形式化为一个优化问题,并根据攻击者对RAG系统的背景知识,提出了两种解决方案。实验结果表明,PoisonedRAG在注入少量恶意文本后,能够实现高达90%的攻击成功率,并且现有的防御措施不足以抵御这种攻击。

创新点

  1. 提出了PoisonedRAG,这是首个针对RAG系统的知识腐败攻击。
  2. 将知识腐败攻击形式化为一个优化问题,并根据攻击者的背景知识提出了两种解决方案。
  3. 实验表明,PoisonedRAG能够在知识数据库中注入少量恶意文本后,实现高攻击成功率。
  4. 评估了多种防御措施,发现它们不足以防御PoisonedRAG,强调了开发新防御措施的必要性。

算法模型

PoisonedRAG的算法模型包括以下关键步骤:

  1. 威胁模型定义:定义攻击者的目标、背景知识和能力。
  2. 优化问题形式化:将恶意文本的生成问题形式化为一个受约束的优化问题。
  3. 恶意文本生成:通过分解恶意文本为两个子文本(S和I),分别用于满足检索条件和生成条件。
  4. 黑盒和白盒设置:根据攻击者是否能够访问检索器的参数,提出了两种不同的攻击解决方案。

文章标题翻译

PoisonedRAG: 针对大型语言模型增强检索生成的知识腐败攻击

摘要

这篇论文探讨了大型语言模型(LLMs)在实际应用中的局限性,如知识更新不及时和产生幻觉(hallucination)等问题。为了缓解这些问题,研究者们提出了一种名为检索增强生成(RAG)的技术。然而,现有的研究主要集中在提高RAG的准确性或效率上,对其安全性的探索较少。本文提出了一种名为PoisonedRAG的知识腐败攻击,通过在RAG系统的知识数据库中注入恶意文本,诱导LLM生成攻击者选择的目标答案。研究者们将这个问题形式化为一个优化问题,并根据攻击者对RAG系统的背景知识,提出了两种解决方案。实验结果表明,PoisonedRAG在注入少量恶意文本后,能够实现高达90%的攻击成功率,并且现有的防御措施不足以抵御这种攻击。

创新点

  1. 提出了PoisonedRAG,这是首个针对RAG系统的知识腐败攻击。
  2. 将知识腐败攻击形式化为一个优化问题,并根据攻击者的背景知识提出了两种解决方案。
  3. 实验表明,PoisonedRAG能够在知识数据库中注入少量恶意文本后,实现高攻击成功率。
  4. 评估了多种防御措施,发现它们不足以防御PoisonedRAG,强调了开发新防御措施的必要性。

算法模型

PoisonedRAG的算法模型包括以下关键步骤:

  1. 威胁模型定义:定义攻击者的目标、背景知识和能力。
  2. 优化问题形式化:将恶意文本的生成问题形式化为一个受约束的优化问题。
  3. 恶意文本生成:通过分解恶意文本为两个子文本(S和I),分别用于满足检索条件和生成条件。
  4. 黑盒和白盒设置:根据攻击者是否能够访问检索器的参数,提出了两种不同的攻击解决方案。
    在这里插入图片描述

实验效果

  • 攻击成功率(ASR):在黑盒设置下,PoisonedRAG在NQ数据集上实现了97%的ASR,即使在知识数据库中有超过268万条干净文本的情况下,通过注入5条恶意文本就能实现。
  • 防御措施评估:评估了包括重述(paraphrasing)和基于困惑度(perplexity)的检测等防御措施,结果表明这些防御措施不足以抵御PoisonedRAG。
    在这里插入图片描述
    在这里插入图片描述

结论

PoisonedRAG证明了RAG系统对知识腐败攻击的脆弱性,并强调了开发新防御措施的必要性。实验结果表明,即使在知识数据库中注入少量恶意文本,也能显著影响LLM生成的目标答案。

推荐阅读指数:★★★★☆

2. LLaVA-KD: A Framework of Distilling Multimodal Large Language Models

Y Cai, J Zhang, H He, X He, A Tong, Z Gan, C Wang… - arXiv preprint arXiv …, 2024
https://arxiv.org/pdf/2410.16236
在这里插入图片描述
LLaVA-KD:一个用于多模态大型语言模型知识蒸馏的框架

摘要

本文提出了一个名为LLaVA-KD的新框架,旨在将大型多模态语言模型(l-MLLM)的知识迁移到小型多模态语言模型(s-MLLM)。通过引入多模态蒸馏(MDist)和关系蒸馏(RDist),框架最小化了l-MLLM和s-MLLM在视觉-文本输出分布上的差异,并传递了l-MLLM对视觉特征之间相关性的建模能力。此外,提出了一个三阶段的训练方案,包括蒸馏预训练(DPT)、监督微调(SFT)和蒸馏微调(DFT),以充分发挥s-MLLM的潜力。实验和消融研究验证了每个组件的有效性。

研究背景

大型语言模型(LLM)在自然语言处理领域取得了显著成就,推动了多模态大型语言模型(MLLM)的发展,以实现视觉和语言信息的统一理解。然而,MLLM的模型规模和计算复杂性的增加限制了其在资源受限环境中的使用。小型MLLM(s-MLLM)旨在减少计算需求,但往往导致性能显著下降。

问题与挑战

如何在不改变小型模型架构的情况下,通过有效的训练策略提高s-MLLM的性能,使其能够捕捉到l-MLLM能够捕获的复杂知识。

如何解决

通过知识蒸馏技术,提出了一个三阶段的训练方案,包括蒸馏预训练(DPT)、监督微调(SFT)和蒸馏微调(DFT),以及MDist和RDist策略,以提高s-MLLM的性能。

创新点

  • 提出了LLaVA-KD框架,用于从l-MLLM向s-MLLM转移知识。
  • 引入了MDist和RDist策略,分别用于对齐视觉-文本表示和传递视觉特征之间的相关性建模能力。
  • 设计了一个三阶段的训练方案,以充分利用s-MLLM的潜力。

算法模型

  • MDist:通过Kullback-Leibler Divergence(KLD)最小化l-MLLM和s-MLLM在视觉和语言模态上的输出分布差异。
  • RDist:通过优化自相关矩阵的相似性,使s-MLLM继承l-MLLM对视觉标记之间复杂关系的理解能力。
  • 三阶段训练方案:包括DPT、SFT和DFT,以提高s-MLLM的多模态对齐和理解能力。
    在这里插入图片描述

实验效果

  • 在五个流行的多模态基准测试中,LLaVA-KD-1B在模型大小为1B参数时,显著优于之前的大规模MLLM模型,如BLIP2-13B和InstructBLIP-7B。
  • 消融研究表明,三阶段训练方案中的每个组件都对性能有积极影响。
    在这里插入图片描述

重要数据与结论

  • LLaVA-KD在多个基准测试中表现出色,证明了其在资源受限环境中部署轻量级MLLM的潜力。
  • 通过结合MDist和RDist,以及三阶段训练方案,LLaVA-KD能够有效地从大型MLLM转移知识到小型MLLM。

推荐阅读指数:★★★★☆

3. Large Language Models Empower Personalized Valuation in Auction

J Sun, T Zhang, H Jiang, K Huang, C Luo, J Wu, J Wu… - arXiv preprint arXiv …, 2024
https://arxiv.org/pdf/2410.15817

大型语言模型在拍卖中增强个性化估值

摘要

本文提出了一个名为Semantic-enhanced Personalized Valuation in Auction (SPVA)的个性化估值框架,该框架利用大型语言模型(LLMs)来整合语义信息,从而改善拍卖中的估值过程。SPVA采用两阶段方法:首先微调LLMs以编码竞拍者的个性化估值,然后构建一个结合了出价算法的Vickrey拍卖环境,以证明更准确的估值可以带来更高的利润。此外,研究者开发了一个包含超过23,000个样本的语义增强数据集,并引入了新的个性化评估指标,以反映竞拍者的偏好和利润。通过模拟不同的拍卖场景,该方法证明了其在现实世界拍卖设置中的有效性。

研究背景

拍卖是经济学中的一种基础经济机制,涉及商品或服务的估值和在特定框架内的竞标算法,用于揭示市场的真实价值。然而,当前的研究主要集中在给定拍卖机制中的出价算法上,往往忽视了将个体竞拍者的独特偏好和与物品相关的语义信息整合到估值过程中的优势。
在这里插入图片描述

问题与挑战

  • 缺乏合格的数据集,无法涵盖足够的信息以进行准确的估值。
  • 传统估值模型难以编码表示竞拍者内在意图和估计值的语义信息。
  • 现有的评估指标未能考虑个体偏好,主要关注收入最大化。

如何解决

通过提出SPVA框架,该框架使用LLMs来深入理解竞拍者的偏好和估值。研究者使用GPT-4来丰富数据集,解释竞拍者估值和出价意图的背后逻辑,并将数据合成为指令提示,用于进一步微调模型。

创新点

  • 提出了一个结合个性化估值和拍卖出价的两阶段框架SPVA。
  • 使用LLMs来丰富数据集并微调模型,以提高估值的准确性。
  • 开发了一个超过23,000个样本的语义增强数据集。
  • 引入了新的评估指标EU(Essential Utility)和EV(Essential Value),以准确评估竞拍者的个性化估值和决策意图。

算法模型

  • 个性化估值:使用GPT-4生成多样化的指令提示,并应用LoRA技术微调模型。
  • 拍卖出价:基于Vickrey拍卖机制,结合Individual Pacing算法来指导竞拍者确定最优出价。

实验效果

  • 在不同的预算约束下,SPVA在EU和EV指标上均表现出色,证明了其在不同场景下的稳定性和有效性。
  • 与现有的LLM模型相比,SPVA在预测竞拍者偏好和物品价值方面的性能有显著提升。

重要数据与结论

  • SPVA在加权F1分数、平均绝对误差(MAE)和对数转换的MAE上均优于基线模型。
  • 在不同预算和物品数量下,SPVA在EU和EV指标上的表现优于其他模型。

推荐阅读指数:★★★☆☆

4. REEF: Representation Encoding Fingerprints for Large Language Models

J Zhang, D Liu, C Qian, L Zhang, Y Liu, Y Qiao, J Shao - arXiv preprint arXiv …, 2024
https://arxiv.org/pdf/2410.14273

REEF: 用于大型语言模型的特征表示指纹

摘要

本文提出了REEF(Representation Encoding Fingerprints),这是一个无需训练的方法,用于识别疑似模型是否是受害者模型的后续开发版本。REEF通过计算和比较疑似模型和受害者模型在相同样本上的表示来确定它们之间的关系。REEF不损害模型的通用能力,对序列微调、剪枝、模型合并和置换都具有鲁棒性。因此,REEF为第三方和模型所有者保护大型语言模型(LLM)的知识产权提供了一种简单有效的途径。

研究背景

大型语言模型(LLM)的训练需要大量的计算资源和数据。为了保护这些模型的知识产权,模型所有者和第三方需要能够识别疑似模型是否是基于某个特定受害者模型开发的。现有的水印方法会在模型中引入额外的训练成本,并可能损害模型的通用能力,甚至可能被移除。

问题与挑战

如何提取能够验证受害者模型的独特特征(即指纹),同时避免额外的训练成本和能力损害,是保护LLM知识产权的关键挑战。

如何解决

REEF通过计算疑似模型和受害者模型在相同样本上的表示之间的中心核对齐(Centered Kernel Alignment, CKA)相似度来解决这一问题。REEF不需要对模型进行额外的训练,且对模型的各种后续开发都具有鲁棒性。
在这里插入图片描述

创新点

  • 提出了REEF,一种无需训练的特征表示指纹方法,用于识别疑似模型是否源自受害者模型。
  • REEF对模型的各种后续开发(如剪枝、微调、合并和置换)都具有鲁棒性。
  • REEF不会损害模型的通用能力,提供了一种保护LLM知识产权的有效方法。

算法模型

REEF使用中心核对齐(CKA)来计算疑似模型和受害者模型表示之间的相似度。CKA基于Hilbert-Schmidt独立性准则(HSIC),用于测量两组随机变量之间的独立性。REEF还考虑了线性核和径向基函数(RBF)核,并证明了CKA相似度对于列置换和列缩放变换是不变的。

实验效果

  • 在不同模型和不同开发方式(如微调、剪枝、合并和置换)下,REEF都展现出了高相似度,证明了其有效性。
  • 实验结果表明,REEF在保护模型知识产权方面具有很高的适用性和鲁棒性。

重要数据与结论

  • REEF在各种情况下都能准确识别出源自受害者模型的疑似模型。
  • REEF对于模型剪枝比率高达90%的情况下仍然有效。
  • REEF在面对恶意开发者尝试通过定制损失函数来规避检测时,仍然能够保持其有效性。

推荐阅读指数:★★★★☆

5. UCFE: A User-Centric Financial Expertise Benchmark for Large Language Models

Y Yang, Y Zhang, Y Hu, Y Guo, R Gan, Y He, M Lei… - arXiv preprint arXiv …, 2024
https://arxiv.org/pdf/2410.14059
在这里插入图片描述
在这里插入图片描述
UCFE:面向大型语言模型的用户中心金融专业知识基准测试

摘要

本文介绍了UCFE(User-Centric Financial Expertise benchmark),这是一个创新框架,旨在评估大型语言模型(LLMs)处理复杂现实世界金融任务的能力。UCFE基准测试采用结合人类专家评估和动态、任务特定的交互来模拟不断演变的金融场景的复杂性。研究者首先进行了涉及804名参与者的用户研究,收集了他们对金融任务的反馈。其次,基于这些反馈创建了数据集,该数据集涵盖了广泛的用户意图和交互。该数据集作为基准,使用LLM-as-Judge方法评估了12个LLM服务。结果显示,基准分数与人类偏好之间存在显著一致性,皮尔逊相关系数为0.78,证实了UCFE数据集和评估方法的有效性。UCFE基准测试不仅揭示了LLMs在金融领域的潜力,还为评估它们的性能和用户满意度提供了一个强大的框架。

研究背景

随着LLMs在金融领域的应用不断扩展,金融专业人员越来越多地使用LLMs来解决专业金融任务。这些任务的复杂性包括专业背景、金融术语、法律复杂性以及动态市场,这些都需要LLMs能够准确分析金融信息,因为即使是对信号或市场信息的轻微忽视也可能导致重大的财务损失。

问题与挑战

现有的金融基准测试主要关注结构化的NLP任务和确定性答案,依赖于多项选择题或特定答案的任务,如情感分析和命名实体识别。这些限制了评估生成能力,这对于模拟现实世界金融应用至关重要。此外,金融法规的不断演变要求LLMs不断更新知识以保持合规性和实用性。

如何解决

为了解决这些挑战,研究者提出了一个新颖的框架UCFE,它通过结合人类专家判断和LLMs来评估LLMs处理现实世界金融任务的能力。通过动态、以用户为中心的交互,这项工作探索了LLMs的边界,检验了LLMs适应不断演变的专业需求和越来越复杂的任务要求的能力。

创新点

  • 提出了一个新的框架,结合了人类专家判断和LLMs来评估LLMs处理复杂金融任务的能力。
  • 通过动态、以用户为中心的交互,探索了LLMs的潜力和在现实世界金融场景中的局限性。
  • 引入了新的评估指标EU(Essential Utility)和EV(Essential Value),以准确评估竞拍者的个性化估值和决策意图。

算法模型

UCFE基准测试使用LLM-as-Judge方法,通过Elo评分系统来评估模型性能。该方法从金融特定的任务开始,使用GPT-4模拟用户交互,生成对话数据,并基于实际行为进行模拟。然后,使用Claude-3.5-Sonnet作为评估器,根据特定的提示比较模型输出,并根据人类专家的偏好进行比较。

实验效果

实验结果显示,经过金融语料库继续预训练的模型(如Tongyi-Finance-14B-Chat和CFGPT2-7B)在理解复杂金融概念和准确解释用户意图方面表现出显著的改进。此外,中等大小的模型(7B到14B参数)表现尤为出色,它们在计算效率和领域专业知识之间取得了有效平衡。

重要数据与结论

  • 模型性能与人类偏好之间存在显著一致性,皮尔逊相关系数为0.78。
  • 经过金融文本数据训练的LLMs在各种任务中表现出色。
  • 中等大小的模型在计算效率和领域专业知识之间取得了有效平衡。

推荐阅读指数:★★★★☆


后记

如果觉得我的博客对您有用,欢迎打赏支持!三连击(点赞、收藏、关注和评论)不迷路,我将持续为您带来计算机人工智能前沿技术(尤其是AI相关的大语言模型,深度学习和计算机视觉相关方向)最新学术论文及工程实践方面的内容分享,助力您更快更准更系统地了解 AI前沿技术

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/905124.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Flutter学习笔记(一)-----环境配置

一、android 环境 android这边可以参照godot的配置 1.装java Java Downloads | Oracle x64 Compressed Archive :下载后直接解压到某个位置,不用安装 x64 installer: 下载后双击安装 注意:不要去百度直接搜Java安装,这样你最多安…

华为配置 之 IPv6路由配置

目录 简介: 知识点: IPv6静态路由配置: IPv6默认路由配置: 总结: 简介: IPv6(Internet Protocol Version 6)是网络层协议的第二代标准协议,也被称为IPng(…

NIM 平台生成式 AI-demo

需要python环境 官网注册:(后续调用模型需要秘钥key)Try NVIDIA NIM APIs 可以看到有多种模型: 官方案例 1.安装相关依赖: pip install langchain_nvidia_ai_endpoints langchain-community langchain-text-splitt…

《Python网络安全项目实战》

《Python网络安全项目实战》 项目1 Python 环境安装任务1.1 Windows上安装Python任务1.2 Ubuntu环境下安装Python 项目2 Python基础练习任务2.1 使用数据类型任务2.2 使用组合数据类型任务2.3 使用控制结构任务2.4 使用函数任务2.5 使用模块 项目3 处理文件中的数据任务3.1 读文…

​双十一买什么比较划算?2024年双十一必买好物推荐

双十一期间哪些商品最值得购买?一年一度的双十一购物狂欢节又如约而至,各大电商平台纷纷推出了各种优惠活动和促销策略,让人眼花缭乱。在这个全民购物的盛宴中,如何才能买到真正划算的好物,成为了许多消费者关注的焦点…

AI视频王者归来-[ComfyUI]PyramidFlow:快手开源视频模型,与Mochi比拼谁更强?8G可运行10秒768P与24帧视频生成

在人工智能视频生成的领域,ComfyUI的PyramidFlow和Mochi两款模型一直是业界关注的焦点。而最近,快手开源了PyramidFlow模型,引发了与Mochi模型的新一轮比拼。那么,究竟哪一款模型更胜一筹呢? PyramidFlow和Mochi的比拼…

Vivo开奖了,劝退价。。

vivo 也开奖了,不过有小伙伴反馈是个劝退价,甚至不如隔壁的 oppo,要说这两家也是渊源颇深,一家是绿厂,一家是蓝厂,高管也都是早期步步高出来的。 给大家盘一下开奖的信息,方便大家横向做个对比&…

【C++】哈希表模拟:闭散列技术与哈希冲突处理

C语法相关知识点可以通过点击以下链接进行学习一起加油!命名空间缺省参数与函数重载C相关特性类和对象-上篇类和对象-中篇类和对象-下篇日期类C/C内存管理模板初阶String使用String模拟实现Vector使用及其模拟实现List使用及其模拟实现容器适配器Stack与QueuePriori…

SketchUp 云渲染—助力您的渲染

目前市面上的渲染平台有很多,但是能支持SketchUp云渲染的特别少,大部分云渲染是还是不支持的,今天就给大家介绍国内支持Sketchup渲染的云渲染——【渲染101】云渲染的使用方法。 1、官网下载最新的客户端并且安装。 2、登录客户端配置好对应…

栈和队列(2)——队列

队列的基本概念 1. 队列定义:只允许在一端进行插入,在另一端进行删除的线性表。 2. 队列特点:先进先出(FIFO)。 3. 队列基本操作:初始化队列、销毁队列、入队、出队、读队头元素、判队列空等。 InitQueue…

凭什么你说不是就不是-zzj杯·UMLChina建模答题赛第6赛季第2轮

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 参考潘加宇在《软件方法》和UMLChina公众号文章中发表的内容作答。在本文下留言回答。 只要最先答对前3题,即可获得本轮优胜。 如果有第4题,第4题为附加题&am…

【hacker送书第14期】AI训练师算法与模型训练从入门到精通

全面精通人工智能训练,成为行业领先、更懂AI的人! 前言内容简介总结参与方式 前言 在人工智能(AI)技术日益成熟的今天,AI训练师成为了一个新兴且重要的职业。他们不仅需要掌握AI的核心技术,还要能够将这些…

一文详细讲解进销存系统(附架构图、流程、功能介绍)

企业经营的七大要素是“人、财、物、产、供、销、存”,进销存管理就占到了其中的多项。然而,许多企业在进销存管理方面面临着诸多痛点问题,例如库存管理混乱、采购销售流程不清晰、数据不准确等。这些问题不仅影响企业的运营效率,…

如何在Python爬虫等程序中设置和调用http代理

在Python爬虫中为了更好地绕过反爬机制,获取网页信息,有时可能需要在Python中应用代理服务,这样做的目的就是防止自己的ip被服务器封禁,造成程序运行时中断连接,那么如何在python中设置代理呢? 我们通过几个…

2024年【浙江省安全员-C证】试题及解析及浙江省安全员-C证复审考试

题库来源:安全生产模拟考试一点通公众号小程序 2024年【浙江省安全员-C证】试题及解析及浙江省安全员-C证复审考试,包含浙江省安全员-C证试题及解析答案和解析及浙江省安全员-C证复审考试练习。安全生产模拟考试一点通结合国家浙江省安全员-C证考试最新…

8、Node.js Express框架

五、Express框架 5.1概念 Express框架是一个基于Node.js平台的极简、灵活的WEB开发框架:www.express.com.cn 简单来说,Express是一个封装好的工具包,封装了很多功能,便于我们开发WEB应用 5.2安装 npm i express5.3 Express初体验 //01-express初体验.js //1.导入exrp…

Python(包和模块)

包 定义 包是将模块以文件夹的组织形式进行分组管理的方法,以便更好地组织和管理相关模块。 包是一个包含一个特殊的__init__.py文件的目录,这个文件可以为空,但必须存在,以标识目录为Python包。 包可以包含子包(子…

万方数据库功能亮点介绍及个人下载万方论文的方法

一、万方数据库介绍 万方数据知识服务平台是北京万方数据股份有限公司主要产品之一。该平台整合数亿条全球优质学术资源,集成期刊、学位、会议、标准、专利等十余种资源类型、品质知识资源、先进的发现技术、人性化设计于一身,是国内一流的品质知识资源…

18 实战:基于Tkinter和OpenCV的视频编码器:实现MPEG4矩形帧编码器

引言 在视频处理领域,视频编码器的设计与实现一直是研究的热点。本文将深入解析一段基于Python的代码,该代码利用Tkinter、OpenCV和NumPy库构建了一个MPEG4矩形帧编码器的图形用户界面(GUI)。通过详尽的代码讲解,帮助读者全面理解视频编码的基本原理及其在实际应用中的实…

12-Docker发布微服务

12-Docker发布微服务 Docker发布微服务 搭建SpringBoot项目 新建一个SpringBoot项目 选择依赖项Spring Web和Spring Boot Actuator 在com.qi.docker_boot下创建controller目录,并在该目录下创建OrderController的java类 OrderControllerjava类的内容如下&#xf…