Ubuntu 20.04 安装 OpenCV 和 OpenCV_contrib 教程

Ubuntu 20.04 安装 OpenCV 和 OpenCV_contrib 教程

      • Ubuntu 20.04 安装 OpenCV 和 OpenCV_contrib 教程
        • 前言
      • OpenCV
        • 概述
        • 核心功能
        • 优势特点
        • 应用领域
        • 安装与使用
      • OpenCV_contrib
        • 概述
        • 核心功能
        • 具体模块
      • 安装与使用
        • 一、准备工作
        • 二、下载OpenCV和OpenCV_contrib
        • 三、编译和安装OpenCV
        • 四、配置环境变量
        • 五、验证安装
        • 六、总结
        • 七、安装时遇到的问题

Ubuntu 20.04 安装 OpenCV 和 OpenCV_contrib 教程

前言

在Ubuntu 20.04上安装OpenCV和OpenCV_contrib可以为你提供强大的计算机视觉和图像处理功能。它们各自具有独特的特点和功能。以下是对它们的详细介绍:

OpenCV

概述

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,自1999年由Intel建立以来,凭借其强大的功能和广泛的应用,迅速成为计算机视觉领域的核心力量。它提供了丰富的工具和功能,广泛应用于图像处理、视频分析、视图重建、物体识别、面部识别等领域。

核心功能

OpenCV的功能覆盖了图像处理的各个方面,主要包括但不限于以下几点:

  • 图像处理:支持图像的加载、保存、调整大小、旋转、裁剪、滤波、边缘检测等操作。OpenCV提供的直方图均衡化、图像平滑等功能,能够有效改善图像质量,为后续处理奠定基础。
  • 物体检测与跟踪:集成了多种目标检测和跟踪算法,如Haar级联检测器、HOG特征检测器、卡尔曼滤波器等,广泛应用于人脸检测、行人检测、车牌识别等场景。
  • 特征提取与匹配:包括角点检测、描述符提取、特征匹配等功能,有助于从图像中提取关键信息并进行比较和分析。
  • 机器学习:集成了分类、聚类、回归等机器学习算法,方便进行模式识别和数据挖掘。
  • 深度学习:与主流深度学习框架(如TensorFlow、PyTorch)集成,支持神经网络模型的训练和推断,推动计算机视觉技术的进一步发展。
  • 视频分析:包括视频捕捉、视频处理、目标跟踪、视频稳定等功能,适用于监控和安全等应用。
优势特点
  • 开源性:作为开源项目,OpenCV允许任何人自由地使用、修改及分发其源代码。
  • 跨平台兼容性:支持Windows、Linux、Mac等多个操作系统,展现了出色的灵活性和广泛适用性。
  • 高效性能:基于C/C++的底层设计使得OpenCV在图像处理任务中表现卓越,计算能力出众。
  • 可扩展接口:除C/C++外,还提供Python等语言接口,便于开发者根据需求进行个性化扩展和定制。
应用领域

OpenCV的广泛应用领域使其成为连接多个行业的桥梁,包括但不限于:

  • 智能监控:通过人脸检测、行为分析等技术,提高监控系统的智能化水平。
  • 自动驾驶:在车辆识别、道路检测、障碍物避让等方面发挥重要作用。
  • 医学图像处理:辅助医生进行病灶检测、手术规划等。
  • 工业检测:实现产品质量检测、自动化生产等。
  • 农业图像分析:监测作物生长状况、病虫害识别等。
  • 机器人技术:为机器人提供视觉感知能力,实现自主导航、目标抓取等功能。
安装与使用

以Python用户为例,可以通过pip命令安装OpenCV库:

pip install opencv-python

或者使用conda进行安装:

conda install -c conda-forge opencv

安装完成后,便可以在Python项目中导入OpenCV库,并使用其提供的函数和类进行图像处理或计算机视觉任务。

OpenCV_contrib

概述

OpenCV_contrib是OpenCV的一个扩展库,主要用于开发和维护OpenCV的额外模块。这些模块通常包含高级功能、实验性功能以及社区贡献的功能扩展,为开发者提供了更广泛的工具选择,以处理复杂的视觉任务。

核心功能

OpenCV_contrib项目包含了许多额外的功能模块,这些模块通常具有以下特点:

  • 高级功能:包括但不限于深度学习、增强现实、3D重建等高级计算机视觉功能。
  • 实验性功能:这些模块可能还在开发中,API可能不稳定,因此不适合直接集成到OpenCV的主库中。
  • 社区贡献:许多模块是由社区开发者贡献的,提供了丰富的功能扩展。
具体模块

OpenCV_contrib包含了一系列先进的算法和技术,如:

  • Face Detection and Recognition:提供了基于深度学习的dnn模块,可以用于实时的人脸检测和识别。
  • Super Resolution:superres模块提供了图像超分辨率重建算法,能够提升低清晰度图片的质量。
  • Structure from Motion (SfM):使用sfm模块可以从多视角图像中恢复场景的三维结构。
  • Feature Detectors and Descriptors:xfeatures2d提供了许多特征检测和描述符,如AKAZE、SURF等,这些在对象识别和图像匹配中非常有用。

此外,OpenCV_contrib还引入了实验性的模块,例如optflow(光流估计)、text(文本检测和识别)以及aruco(AR标记),这些都对研究者和开发者极其有价值。

安装与使用

OpenCV_contrib的安装通常需要与OpenCV主库一起进行编译。确保OpenCV和OpenCV_contrib的版本一致,本教程将指导你如何一步步安装OpenCV和OpenCV_contrib,并确保配置正确。。安装完成后,便可以在项目中导入并使用OpenCV_contrib提供的额外模块和功能。

一、准备工作
  1. 更新系统软件包

    首先,确保你的系统软件包是最新的。打开终端,输入以下命令:

    sudo apt update
    sudo apt upgrade
    

在这里插入图片描述
2. 安装依赖项

安装OpenCV和OpenCV_contrib所需的依赖项:

sudo apt install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev

在这里插入图片描述

二、下载OpenCV和OpenCV_contrib
  1. 创建工作目录

    首先,创建一个工作目录来存放OpenCV和OpenCV_contrib的源码:

    mkdir ~/opencv_build
    cd ~/opencv_build
    

在这里插入图片描述
2. 克隆OpenCV和OpenCV_contrib的源码

如果希望安装最新版可直接使用git clone命令从GitHub上克隆OpenCV和OpenCV_contrib的源码:

git clone https://github.com/opencv/opencv.git
git clone https://github.com/opencv/opencv_contrib.git

如果希望下载指定版本有两种方式:
官网下载:https://opencv.org/releases/
在这里插入图片描述
如果要下载对应的opencv_contrib,需要在github仓库进行(如图):
https://github.com/opencv
在这里插入图片描述
进入指定仓库,找到Release,进行源码下载:
在这里插入图片描述
在这里插入图片描述
解压指令
zip:解压到当前文件夹

    unzip opencv-4.10.0.zip

tar.gz:

    tar -zxvf opencv-4.10.0.tar.gz


将opencv和对应版本的opencv_contrib全部解压。
在这里插入图片描述

三、编译和安装OpenCV
  1. 创建build目录

    在OpenCV源码目录下创建一个build目录,并进入该目录:

    cd ~/opencv_build/opencv-4.10.0
    mkdir build
    cd build
    

在这里插入图片描述

  1. 使用CMake配置OpenCV构建

    使用cmake命令配置OpenCV的构建选项,包括指定OpenCV_contrib的路径:

cmake -D CMAKE_BUILD_TYPE=Release \
-D CMAKE_INSTALL_PREFIX=/usr/local/opencv4.10 \
-D OPENCV_EXTRA_MODULES_PATH=/root/workspace/programs/opencv_build/opencv_contrib-4.10.0/modules \
-D OPENCV_GENERATE_PKGCONFIG=YES \
-D BUILD_opencv_world=YES \
-D BUILD_opencv_python2=OFF \
-D BUILD_opencv_python3=ON \
-D PYTHON_DEFAULT_EXECUTABLE=/root/workspace/anaconda3/envs/dscnet/bin/python3 \
-D PYTHON3_EXECUTABLE=/root/workspace/anaconda3/envs/dscnet/bin/python3 \
-D PYTHON3_LIBRARY=/root/workspace/anaconda3/envs/dscnet/lib/libpython3.8.so \
-D PYTHON_INCLUDE_DIR=/root/workspace/anaconda3/envs/dscnet/include/python3.8 \
-D PYTHON3_NUMPY_INCLUDE_DIRS=/root/workspace/anaconda3/envs/dscnet/lib/python3.8/site-packages/numpy/core/include \
-D PYTHON3_PACKAGES_PATH=/root/workspace/anaconda3/envs/dscnet/lib/python3.8/site-packages ..

在这里插入图片描述

注意:-D OPENCV_EXTRA_MODULES_PATH选项指定了OpenCV_contrib的modules目录的路径。
如果该命令中不加-D CMAKE_INSTALL_PREFIX=/usr/local/opencv4.10,则默认各部分分别安装在/usr/local/目录的include/, bin/, lib/3个文件夹下。

-D OPENCV_GENERATE_PKGCONFIG=YES: OpenCV4以上版本默认不使用pkg-config,该编译选项开启生成opencv4.10.pc文件,支持pkg-config功能。

-D WITH_CUDA=ON实现和cuda的联合编译。

后面关于python的路径设置以已安装anaconda的设定为准,需要注意的是python版本和你使用的虚拟环境一致。

这里有时候偶尔会报错"fatal error: numpy/ndarrayobject.h: 没有那个文件或目录",解决方法:打开对应虚拟环境的python输入

import numpy as np
np.get_include()

按照这个输出路径重新配置PYTHON3_NUMPY_INCLUDE_DIRS,然后再cmake。
注意:如果是在build目录下进行cmake,一定不要忘了最后的两个点cmake xxx ..

  1. 编译和安装OpenCV

    使用make命令编译OpenCV,并使用sudo make install命令安装:

    make -j$(nproc)
    sudo make install
    

    注意:-j$(nproc)选项会利用你系统的所有核心来加速编译过程。

四、配置环境变量
  1. 更新动态链接库配置

    /etc/ld.so.conf.d/目录下创建一个新的配置文件,并添加OpenCV库的路径:

    sudo nano /etc/ld.so.conf.d/opencv.conf
    

    在文件中添加以下内容:

    /usr/local/lib
    

    保存并关闭文件,然后运行sudo ldconfig命令来更新动态链接库配置。

  2. 配置环境变量

    打开/etc/bash.bashrc文件,并添加以下行来配置环境变量:

    sudo nano /etc/bash.bashrc
    

    在文件末尾添加以下内容:

    PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
    export PKG_CONFIG_PATH
    

    保存并关闭文件,然后运行source /etc/bash.bashrc命令来使更改生效。

五、验证安装
  1. 检查OpenCV版本

    在终端输入以下命令来检查OpenCV的版本:

    pkg-config --modversion opencv4
    

    如果输出了OpenCV的版本号,则表示安装成功。

  2. 编译和运行示例程序

    进入OpenCV的samples目录,并编译和运行一个示例程序来验证安装:

    cd ~/opencv_build/opencv/samples/cpp/example_cmake
    cmake .
    make
    ./opencv_example
    

    如果程序成功运行并显示了一个窗口,则表示OpenCV和OpenCV_contrib已经正确安装和配置。

六、总结

通过以上步骤,你已经成功在Ubuntu 20.04上安装了OpenCV和OpenCV_contrib,并进行了基本的配置和验证。现在你可以开始使用OpenCV进行各种计算机视觉和图像处理任务了。

七、安装时遇到的问题

ippicv_2020_lnx_intel64_20191018_general.tgz下载不了
手动下载ippicv_2020_lnx_intel64_20191018_general.tgz

https://github.com/opencv/opencv_3rdparty/blob/ippicv/master_20191018/ippicv/ippicv_2020_lnx_intel64_20191018_general.tgz(根据错误信息更新)

上传至/home/test(自定义目录)下

修改ippicv.cmake

 set(THE_ROOT "${OpenCV_BINARY_DIR}/3rdparty/ippicv")
  ocv_download(FILENAME ${OPENCV_ICV_NAME}
               HASH ${OPENCV_ICV_HASH}
               URL
                 "${OPENCV_IPPICV_URL}"
                 "$ENV{OPENCV_IPPICV_URL}"
                 "https://raw.githubusercontent.com/opencv/opencv_3rdparty/${IPPICV_COMMIT}/ippicv/"
               DESTINATION_DIR "${THE_ROOT}"
               ID IPPICV
               STATUS res
               UNPACK RELATIVE_URL)

改为

 set(THE_ROOT "${OpenCV_BINARY_DIR}/3rdparty/ippicv")
  ocv_download(FILENAME ${OPENCV_ICV_NAME}
               HASH ${OPENCV_ICV_HASH}
               URL
                 "${OPENCV_IPPICV_URL}"
                 "$ENV{OPENCV_IPPICV_URL}"
                 "file:///home/test/"
               DESTINATION_DIR "${THE_ROOT}"
               ID IPPICV
               STATUS res
               UNPACK RELATIVE_URL)

ade-v0.1.1f.zip下载不了
手动下载

https://github.com/opencv/ade/archive/v0.1.1f.zip(根据错误信息更新)

上传至/home/test

修改DownloadADE.cmake

ocv_download(FILENAME ${ade_filename}
             HASH ${ade_md5}
             URL
               "${OPENCV_ADE_URL}"
               "$ENV{OPENCV_ADE_URL}"
               "https://github.com/opencv/ade/archive/"
             DESTINATION_DIR ${ade_src_dir}
             ID ADE
             STATUS res
             UNPACK RELATIVE_URL)

改为

ocv_download(FILENAME ${ade_filename}
             HASH ${ade_md5}
             URL
               "${OPENCV_ADE_URL}"
               "$ENV{OPENCV_ADE_URL}"
               "file:///home/test/"
             DESTINATION_DIR ${ade_src_dir}
             ID ADE
             STATUS res
             UNPACK RELATIVE_URL)
            

注意,修改是最后的斜杠(/)不能丢

问题:编译OpenCV 4.10.0, 显示出错:

/usr/bin/ld: /lib/x86_64-linux-gnu/libwayland-client.so.0: undefined reference to ffi_type_uint32@LIBFFI_BASE_7.0’
/usr/bin/ld: /lib/x86_64-linux-gnu/libwayland-client.so.0: undefined reference to ffi_type_sint32@LIBFFI_BASE_7.0' /usr/bin/ld: /lib/x86_64-linux-gnu/libwayland-client.so.0: undefined reference to ffi_type_pointer@LIBFFI_BASE_7.0’
/usr/bin/ld: /lib/x86_64-linux-gnu/libwayland-client.so.0: undefined reference to ffi_type_void@LIBFFI_BASE_7.0' /usr/bin/ld: /lib/x86_64-linux-gnu/libwayland-client.so.0: undefined reference to ffi_prep_cif@LIBFFI_BASE_7.0
/usr/bin/ld: /lib/x86_64-linux-gnu/libwayland-client.so.0: undefined reference to ffi_call@LIBFFI_BASE_7.0' collect2: error: ld returned 1 exit status make[2]: *** [apps/annotation/CMakeFiles/opencv_annotation.dir/build.make:104:bin/opencv_annotation] 错误 1 make[1]: *** [CMakeFiles/Makefile2:3208:apps/annotation/CMakeFiles/opencv_annotation.dir/all] 错误 2 make[1]: *** 正在等待未完成的任务....

问题分析:系统的动态链接库和Anaconda的动态链接库指向的版本不同,因此编译出错。

解决方法:先下载一个工具包locate。比find好用。

$ sudo apt install locate
$ sudo updatedb

然后用内置命令ldd查看出现问题的libwayland-client.so.0当中,所依赖的ffi这个库的叫什么。

$ ldd /lib/x86_64-linux-gnu/libwayland-client.so.0 | grep ffi

我们可以发现依赖的这个库叫做libffi.so.7。
在这里插入图片描述
之后locate这个文件,发现除了/usr/lib/x86_64-linux-gnu之外,我的Anaconda安装目录/lib下面也有一个libffi.so.7。输入以下命令分别查看两个libffi.so.7链接的动态库文件:

查看系统的libffi

$ ll /lib/x86_64-linux-gnu/ | grep ffi

查看Anaconda的libffi

$ ll ~/anaconda3/lib/ | grep ffi

结果显示系统的libffi.so.7指向了7.1.0版本,而Anaconda下的指向了8.1.2版本。
在这里插入图片描述
在这里插入图片描述

因此,把anaconda下的libffi.so.7指向系统的7.1.0就可以了。

$ cd (你的Anaconda安装目录)/lib
$ sudo rm libffi.so.7
$ sudo ln -s /lib/x86_64-linux-gnu/libffi.so.7.1.0 libffi.so.7

再次查看Anaconda下的ffi,发现libffi.so.7已经指向了lib/x86_64-linux-gnu/libffi.so.7.1.0。
在这里插入图片描述
再次编译OpenCV,通过。

总结:当编译程序的时候,如果安装了Anaconda,经常会出现动态链接库的依赖指向问题。保证系统和Anaconda的依赖库版本一致,可以避免一些Bug。

ldd这个命令常用来打印或者查看程序运行所需的共享库(访问共享对象依赖关系),可以解决程序因缺少某个库文件而不能运行的一些问题。
————————————————

问题参考原文链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/904301.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【鸿蒙HarmonyOS实战:通过华为应用市场上架测试版App实现HBuilder X打包的UniApp项目的app转hap教程(邀请码)方式教程详解】

鸿蒙HarmonyOS实战:通过华为应用市场上架测试版App实现HBuilder X打包的UniApp项目的app转hap教程(邀请码)方式详解 在使用uniapp打包的鸿蒙项目的过程中,由于生成的是app文件,而hdc传给鸿蒙HarmonyOS系统需要的是hap文…

HarmonyOS 5.0应用开发——应用打包HAP、HAR、HSP

【高心星出品】 目录 应用打包HAP、HAR、HSPModule类型HAPHAR创建HAR建立依赖HAR共享内容 HSP创建HSP建立依赖同上HSP共享内容同上 HAR VS HSP 应用打包HAP、HAR、HSP 一个应用通常会包含多种功能,将不同的功能特性按模块来划分和管理是一种良好的设计方式。在开发…

数据结构————map,set详解

今天带来map和set的详解&#xff0c;保证大家分清楚 一&#xff0c;概念 map和set是一种专门用来搜索的容器或数据结构 map能存储两个数据类型&#xff0c;我们称之为<key-value>模型 set只能存储一个数据类型&#xff0c;我们称之为纯<key>模型 它们的效率都非…

Vue.js(2): 组件与路由基础指南

这一路上可能会有艰辛、困难、疑惑、付出、泪水、失败&#xff0c;但是一定要享受这个过程&#xff0c;因为所有的失败都是为了下一刻的成功 文章目录 组件什么是组件组件化开发的好处组件底层是什么全局注册组件局部注册组件组件嵌套组件命名规则组件传值 SPAvue-router路由动…

[c++高阶]二叉搜索树深度剖析

1.前言 从二叉搜索树开始&#xff0c;后面慢慢学的AVL树&#xff0c;红黑树&#xff0c;map,set&#xff0c;哈希表等等都会慢慢的变得更难了&#xff0c;也更加难以理解了。希望大家能够坚持下去&#xff0c;只要坚持&#xff0c;就是胜利。 本章重点 着重讲解什么是二叉搜索…

【力扣刷题实战】单值二叉树

大家好&#xff0c;我是小卡皮巴拉 文章目录 目录 力扣题目&#xff1a; 单值二叉树 题目描述 示例 1&#xff1a; 示例 2&#xff1a; 解题思路 题目理解 算法选择 具体思路 解题要点 完整代码&#xff08;C语言&#xff09; 兄弟们共勉 &#xff01;&#xff01;…

MySQL数据库MHA高可用

目录 一、MHA简述 二、MHA 的组成 三、MHA 的特点 四、MHA工作原理 五、MHA部署步骤 六、搭建 MySQL MHA MHA一主两从高可用集群示意图 实验环境 1. Master、Slave1、Slave2 节点上安装 mysql5.7 2. 关闭防火墙 3. 修改 Master、Slave1、Slave2 节点的主机名 4. 修…

国内短剧源码短剧系统搭建小程序部署H5、APP打造短剧平台

​在当今的互联网时代&#xff0c;短剧作为一种新兴的娱乐形式&#xff0c;受到了越来越多用户的喜爱。为了提供更好的用户体验和满足用户需求&#xff0c;一个好的短剧系统需要具备多元化的功能和优质的界面设计。 本文将介绍国内短剧源码短剧系统搭建小程序部署H5、APP所需的…

【传知代码】图像处理解决种子计数方法

文章目录 一、背景及意义介绍研究背景农业考种需求传统计数方法的局限性人工计数仪器设备计数 研究意义提高育种效率提高计数准确性广泛的适用性数据存档与分析便利 二、概述三、材料与数据准备以及方法介绍整体流程图像采集图像预处理形态学操作腐蚀运算开运算 图像二值化种子…

Typora一款极简Markdown文档编辑器和阅读器,实时预览,序列号生成!免费!最新可用!

文章目录 一、Typora下载和安装二、Typora序列号生成 Typora是一款Markdown编辑器和阅读器&#xff0c;风格极简&#xff0c;实时预览&#xff0c;所见即所得&#xff0c;支持MacOS、Windows、Linux操作系统&#xff0c;有图片和文字、代码块、数学公式、图表、目录大纲、文件管…

C/C++(八)C++11

目录 一、C11的简介 二、万能引用与完美转发 1、万能引用&#xff1a;模板中的 && 引用 2、完美转发&#xff1a;保持万能引用左右值属性的解决方案 三、可变参数模板 1、可变参数模板的基本使用 2、push 系列和 emplace 系列的区别 四、lambda表达式&#xf…

海亮科技亮相第84届中国教装展 尽显生于校园 长于校园教育基因

10月25日&#xff0c;第84届中国教育装备展示会&#xff08;以下简称“教装展”&#xff09;在昆明滇池国际会展中心开幕。作为国内教育装备领域规模最大、影响最广的专业展会&#xff0c;本届教装展以“数字赋能教育&#xff0c;创新引领未来”为主题&#xff0c;为教育领域新…

MYSQL期中复习

MYSQL [语句不要拼错&#xff0c;表名、列名不要写错&#xff0c;语句难记要记住] 创建表 模版 create table 表名(列名1 数据类型 [约束], 列明2 数据类型 [约束], [表级约束]); 约束 单一主码约束 primary key 联合主码约束 primary key(列名1,列名2) [要在列名12定义后…

结合Intel RealSense深度相机和OpenCV来实现语义SLAM系统

结合Intel RealSense深度相机和OpenCV来实现语义SLAM系统是一个非常强大的组合。以下是一个详细的步骤指南&#xff0c;帮助你构建这样一个系统。 硬件准备 Intel RealSense深度相机&#xff1a;例如D415、D435或L515。计算平台&#xff1a;一台具有足够计算能力的计算机&…

无人机之多源信息融合算法篇

一、概述 多源信息融合算法在无人机导航领域中扮演着越来越重要的角色。该算法通过整合来自不同传感器&#xff08;如全球定位系统GPS、惯性导航系统INS、磁力计、气压高度计、视觉传感器等&#xff09;的数据&#xff0c;利用先进的数据融合算法处理这些多源信息&#xff0c;以…

【Spring Boot】元注解

元注解 1.元注解1.1 Target1.2 Retention1.3 Inherited1.4 Documented1.5 interface 2.自定义注解2.1 创建自定义注解类2.2 实现业务逻辑2.3 使用自定义注解 1.元注解 元注解就是定义注解的注解&#xff0c;是 Java 提供的用于定义注解的基本注解。 注解 说明 Retention是注解…

索尔德 APON无线工业轨道机车定位测距仪介绍

索尔德APON无线定位测距仪&#xff0c;简称APON&#xff0c;采用先进的应答式微波测距技术&#xff0c;为车辆赋予了一双敏锐的“智慧之眼”&#xff0c;能够精确捕捉到有轨移动车辆的绝对位置&#xff0c;无论是快速穿梭还是缓慢移动&#xff0c;确保它们能够准确无误地抵达预…

企业如何选择适合自己的智能扭矩系统Torque?_SunTorque

【大家好&#xff0c;我是唐Sun&#xff0c;唐Sun的唐&#xff0c;唐Sun的Sun。一站式数智工厂解决方案服务商】 一、选择适合自己企业的智能扭矩系统时&#xff0c;可以考虑以下几个关键因素&#xff1a; 扭矩精度要求 首先要明确企业生产过程中对扭矩精度的具体要求。如果产…

全面解析:轻松掌握多模态技术精髓

多模态检索 多模态检索是指利用多种数据模态&#xff08;如文本、图像、视频、音频等&#xff09;进行信息检索的技术。它旨在通过整合不同形式的数据&#xff0c;提供更全面、精确和丰富的检索结果&#xff0c;以满足用户多样化的查询需求。 接下来分三部分&#xff1a; 单模…

net 获取本地ip地址,net mvc + net core 两种

net mvc public static string GetIP(HttpRequestBase request){// 尝试获取 X-Forwarded-For 头string result request.Headers["X-Forwarded-For"]?.Split(,).FirstOrDefault()?.Trim();if (string.IsNullOrEmpty(result)){// 获取用户的 IP 地址result reques…