Prompt提示词设计:如何让你的AI对话更智能?

Prompt设计:如何让你的AI对话更智能?

在人工智能的世界里,Prompt(提示词)就像是一把钥匙,能够解锁AI的潜力,让它更好地理解和响应你的需求。今天,我们就来聊聊如何通过精心设计的Prompt,让你的AI对话更加智能和高效。

什么是Prompt?

在AI对话模型中,Prompt是用户输入的指令或问题,它引导AI模型生成回答。一个精心设计的Prompt可以帮助AI更准确地理解用户的意图,从而生成更高质量的回答。

为什么Prompt如此重要?

随着AI技术的发展,我们越来越多地依赖于AI来处理各种任务。但是,AI模型并不是完美的,它们在理解和生成自然语言方面仍然存在局限。因此,一个好的Prompt可以显著提高AI的响应质量和效率。

如何设计有效的Prompt?

  1. 「清晰的指令」:确保你的指令明确无误,避免模糊不清的表达。
  2. 「提供上下文」:给出足够的背景信息,帮助AI理解问题的背景和约束条件。
  3. 「使用示例」:提供示例可以帮助AI更好地理解你期望的答案格式和内容。
  4. 「善用符号和语法」:清晰的标点符号和语法结构有助于传达你的意图。
  5. 「分步思考」:鼓励AI分步骤思考问题,这有助于提高答案的准确性和可解释性。
  6. 「激励模型反思」:在Prompt中加入激励性的语言,鼓励AI给出推理过程。

Prompt模板

一个好的Prompt通常包含以下几个要素:

  • 「角色」:指定AI扮演的角色或身份。
  • 「任务」:明确你希望AI完成的任务或目标。
  • 「上下文」:提供与任务相关的背景信息。
  • 「示例」:给出示例,示范所需的内容和格式。
  • 「输出格式」:指定期望的输出外观和结构。
  • 「语气」:定义输出文本的语气或风格。
  • 「限制」:设定生成文本的限制条件,如字数、格式等。

如何选择AI模型?

每个AI模型都有其独特的优势和局限。选择合适的模型,关键在于匹配具体的应用场景。例如:

Chat GPT适合多模态互动任务。Claude AI适合处理长篇内容。Kimi Chat、秘塔AI、文心一言适合国内用户和初学者。

这里我推荐使用Coze平台。Coze平台集成了多种AI模型,包括通义千问、豆包、Kimi等。

Coze平台

Coze是由字节跳动推出的新一代AI聊天机器人和应用程序编辑开发平台,它允许用户无论是否有编程经验,都能快速创建各种类型的聊天机器人、智能体、AI应用和插件,并将其部署在社交平台和即时聊天应用程序中,如Discord、Telegram、Facebook、微信公众号等。

Coze平台的核心功能包括:

  1. 「Bot创建」:用户可以通过Coze平台创建专属的Bot,可以为创建的机器人命名,进行功能介绍、创建缘由、应用场景等背景信息的描述,也可以上传图标照片,或直接选用由DALL-E 3大模型生成的图标。
  2. 「插件系统」:Coze集成了超过60款各类型的插件,包括资讯阅读、旅游出行、效率办公、图片理解等API及多模态模型,可以满足用户在不同领域的聊天需求。
  3. 「知识库」:Coze提供了简单易用的知识库能力,它能让AI与用户的数据进行交互。用户可以在知识库中存储和管理数据,如PDF、TXT、DOCX、网页文本等,使Bot能够使用相关数据。
  4. 「长期记忆」:Coze提供了方便AI交互的数据库记忆功能,通过这个功能,可以让AI Bot持久化地记住对话中的关键参数或内容。
  5. 「定时任务」:用户可以设置定时任务,让机器人主动发起对话,或通过工作流将创意转换为机器人技能,如自动收集电影评论或编写行业报告。

Coze平台支持多种大模型,国内版主要支持的模型包括豆包·Function call 32k、通义千问-Max 8k、智普 GLM-4 128k、MiniMax6.5(8k、245k)、Moonshot(8k/32k/128k)、百川智能Baichuan4 32k等。这些模型的不同参数代表了它们处理文本的能力,即上下文阅读的长度,参数越大,阅读能力越强。

Coze平台的易用性和强大的功能,使其成为创建个性化AI聊天机器人的理想选择,无论是对于开发者还是非技术用户。

写提示词的三个原则

清晰的指令

一个明确的指令可以帮助AI更准确地把握你的意图,从而生成更贴合预期的内容。这不仅提高了效率,还确保了输出的质量。

示例

不清晰的指令:

“设计一个数据库。”

清晰的指令:

“设计一个MySQL数据库,用于管理电子商务平台的订单。数据库应包含以下表格:'orders'(订单ID,客户ID,订单日期,总金额),'order_details'(订单详情ID,订单ID,产品ID,数量,单价),'products'(产品ID,产品名称,库存数量,购买价格)。请为每个表提供主键,并在'orders'和'order_details'之间设置外键约束。”

图片

kimi

少量样本参考

想要特定返回效果,一个案例,就能让AI明白你的意图,高效沟通。让我们以下面的例子更好的解释下。

示例
你是一名多国语言翻译,输入文案的同时可以帮我以‘中文、英语、法语,韩语’同时翻译出来 案例:输入:一个大苹果 英语:A big apple. 法语:Une grande pomme

图片

coze

分解任务

对于复杂的任务,将其分解成一系列简单的子任务可以提高效率并确保每个步骤都能得到充分的关注。

结构化的Prompt

结构化提示词是一种有组织、有条理的提示方式,它通过提供清晰的指令和背景信息帮助AI模型更准确地理解用户的需求,从而提供更加精准和有针对性的回答。主要包含以下要素:

  1. 「角色」:指定AI扮演的角色或身份。
  2. 「任务」:明确你希望AI完成的任务或目标。
  3. 「限制」:设定生成文本的限制条件,如字数、格式等。

在这里插入图片描述
描述】## 技能【技能描述】## 限制【限制描述】

示例
# 角色
您是一位专业的 MySQL 数据库智能助手,精通标准的 SQL 语法,能准确理解用户的自然语言指令并转化为相应的 MySQL 语句。

## 技能
### 技能 1: 自然语言理解
1. 当接收到用户输入的自然语言指令,准确理解其需求。
2. 若指令不清晰,向用户进一步询问以明确需求。
3. 仅处理与 MySQL 数据库操作相关的指令,拒绝无关话题。
=====
   - 📝 MySQL 语句: <生成或优化后的 MySQL 语句>   
   - 💬 解释: <对 SQL 语句的详细解释>
=====

### 技能 2: SQL 语句生成
1. 根据用户清晰明确的自然语言指令,精准生成对应的 MySQL 语句。
2. 严格遵循数据类型匹配原则,确保输入的数据类型与数据库中的数据类型一致。
=====
   - 📝 MySQL 语句: <生成或优化后的 MySQL 语句>   
   - 💬 解释: <对 MySQL 语句的详细解释>
=====

### 技能 3: 结果展示
1. 以文本形式向用户清晰展示执行 MySQL 语句后的结果,包括查询结果、更新条数、删除条数等。
2. 对于创建完的表,以表格格式输出其结构,并为每个字段或者表使用 `COMMENT` 函数进行注释。
===
   - 📝 SQL 语句: <表格>   
   - 💬 解释: <对 MySQL 语句的详细解释>
===

## 限制

- 只能回答MySQL问题。
- 仅处理与 MySQL 数据库操作相关的指令,拒绝无关话题。
- 严格按照给定的格式和要求执行操作,确保准确性和高效性。
- 输出的结果必须清晰、准确、易于理解。

图片

coze

结语

掌握Prompt设计的核心原则和结构化提示词,基本上可以应对90%以上的需求。通过不断实践和优化,你可以更好地掌握与AI对话的技巧,让它成为你工作和生活中的得力助手。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/902369.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

厂房区域人员进出人数统计-实施方案

1.1 现状分析 传统的人流量统计方法往往依赖于人工计数或简单的视频监控系统&#xff0c;这些方法不仅效率低下&#xff0c;而且容易出错&#xff0c;无法满足现代仓库管理的需求。因此&#xff0c;我厂区决定引入先进的智能监控系统&#xff0c;通过集成高清摄像头、GPU服务器…

【Unity】仓库逻辑:拾取物体进仓库和扔掉物品

需求说明 目标&#xff1a;实现玩家移动过程中&#xff0c;拾取物体&#xff0c;物体被放入仓库&#xff1b;点击仓库中物体&#xff0c;重新扔回3D场景中逻辑。 逻辑分析&#xff1a; 需要玩家可以移动&#xff1b;需要检测玩家和物体的碰撞&#xff0c;并摧毁物体&#xf…

css知识点梳理2

1. 选择器拓展 在 CSS 中&#xff0c;可以根据选择器的类型把选择器分为基础选择器和复合选择器&#xff0c;复合选择器是建立在基础选择器之上&#xff0c;对基本选择器进行组合形成的。 ​ 复合选择器是由两个或多个基础选择器&#xff0c;通过不同的方式组合而成的&#xf…

【Flask】一、安装与第一个测试程序

目录 Flask简介 安装Flask 安装pip&#xff08;Python包管理器&#xff09; 使用pip安装Flask 验证安装 创建Flask程序 创建应用 运行 访问测试 Flask简介 Flask是一个用Python编写的轻量级Web应用框架。它被设计为易于使用和扩展&#xff0c;使其成为构建简单网站或复…

[项目][boost搜索引擎#4] cpp-httplib使用 | log.hpp | 前端 | 测试及总结

目录 编写http_server模块 1. 引入cpp-httplib到项目中 2. cpp-httplib的使用介绍 3. 正式编写http_server 九、添加日志到项目中 十、编写前端模块 十一. 详解传 gitee 十二、项目总结 项目的扩展 写在前面 项目 gitee 已经上传啦 &#xff08;还是决定将学校和个人…

网络编程基础-Reactor线程模型-原理剖析

1、Reactor基本概念 Reactor线程模型其实是一种设计模式&#xff0c;其核心思想就是将输入多路复用和事件派发相结合&#xff0c;从而减少系统中活跃线程的数量。 像我们之前讲到的文章网络编程基础-IO模型深入理解_网络io-CSDN博客提到了其中网络IO模型&#xff08;BIO、NIO…

asp.net core 入口 验证token,但有的接口要跳过验证

asp.net core 入口 验证token,但有的接口要跳过验证 在ASP.NET Core中&#xff0c;你可以使用中间件来验证token&#xff0c;并为特定的接口创建一个属性来标记是否跳过验证。以下是一个简化的例子&#xff1a; 创建一个自定义属性来标记是否跳过验证&#xff1a; public clas…

基于PHP的http字段查询与注册(V1)(持续迭代)

目录 版本说明&#xff1a; 实现环境&#xff08;WAMP&#xff09;&#xff1a; 数据库链接 查询页面 php处理逻辑 字段添加 版本说明&#xff1a; 该查询功能以查询http首部字段为目的实现的字段属性、字段内容的查询&#xff0c;以及对新字段信息的数据注册。 v1实现…

python 制作 发货单 (生成 html, pdf)

起因&#xff0c; 目的: 某个小店&#xff0c;想做个发货单。 过程: 先写一个 html 模板。准备数据&#xff0c; 一般是从数据库读取&#xff0c;也可以是 json 格式&#xff0c;或是 python 字典。总之&#xff0c;是数据内容。使用 jinja2 来渲染模板。最终的结果可以是 h…

多线程进阶——线程池的实现

什么是池化技术 池化技术是一种资源管理策略&#xff0c;它通过重复利用已存在的资源来减少资源的消耗&#xff0c;从而提高系统的性能和效率。在计算机编程中&#xff0c;池化技术通常用于管理线程、连接、数据库连接等资源。 我们会将可能使用的资源预先创建好&#xff0c;…

WPF+MVVM案例实战(七)- 系统初始化界面字体描边效果实现

文章目录 1、案例效果展示2、项目准备3、功能实现1、资源获取2、界面代码3、后台代码 4 源代码获取 1、案例效果展示 2、项目准备 打开项目 Wpf_Examples&#xff0c;新建系统初始化界面 WelcomeWindow.xmal,如下所示&#xff1a; 3、功能实现 1、资源获取 案例中使用的CSD…

Java | Leetcode Java题解之第516题最长回文子序列

题目&#xff1a; 题解&#xff1a; class Solution {public int longestPalindromeSubseq(String s) {int n s.length();int[][] dp new int[n][n];for (int i n - 1; i > 0; i--) {dp[i][i] 1;char c1 s.charAt(i);for (int j i 1; j < n; j) {char c2 s.char…

【Java并发编程】信号量Semaphore详解

一、简介 Semaphore&#xff08;信号量&#xff09;&#xff1a;是用来控制同时访问特定资源的线程数量&#xff0c;它通过协调各个线程&#xff0c;以保证合理的使用公共资源。 Semaphore 一般用于流量的控制&#xff0c;特别是公共资源有限的应用场景。例如数据库的连接&am…

Python | Leetcode Python题解之第516题最长回文子序列

题目&#xff1a; 题解&#xff1a; class Solution:def longestPalindromeSubseq(self, s: str) -> int:n len(s)dp [[0] * n for _ in range(n)]for i in range(n - 1, -1, -1):dp[i][i] 1for j in range(i 1, n):if s[i] s[j]:dp[i][j] dp[i 1][j - 1] 2else:dp…

从病理AI的基础模型发展历程,看未来的医学AI发展趋势|个人观点·24-10-23

小罗碎碎念 在临床相关的人工智能&#xff08;AI&#xff09;模型发展方面&#xff0c;传统上需要大量标注数据集&#xff0c;这使得AI的进步主要围绕大型中心和私营企业展开。所以&#xff0c;在这期推文中&#xff0c;我会介绍一些已经商用的模型&#xff0c;并且为计划进军…

逻辑推理学习笔记

目的 立场辩护整理思绪 基本框架 论题 &#xff08;变化&#xff09; 我要证明&#xff08;讨论对象 变化&#xff09; 论据 &#xff08;变化&#xff09; 拿什么证明&#xff1f;也就是证据呈现。 论证 &#xff08;不变&#xff09; 要如何证明&#xff1f;逻辑框架…

通过conda install -c nvidia cuda=“11.3.0“ 安装低版本的cuda,但是却安装了高版本的12.4.0

问题 直接通过 conda install -c nvidia cuda"11.3.0"安装得到的却是高版本的 不清楚原理 解决方法 不过我们可以分个安装 runtime toolkit 和 nvcc 安装指定版本的 cudatoolkit 和 nvcc conda install -c nvidia cuda-cudart"11.3.58" conda instal…

【Linux系统编程】——Linux入门指南:从零开始掌握操作系统的核心(指令篇)

文章目录 查看 Linux 主机 ip以及登录主机Linux基础文件操作指令man&#xff1a;查看命令的手册页&#xff0c;了解命令的详细用法。pwd&#xff1a;显示当前目录路径。cd&#xff1a;切换目录。ls&#xff1a;列出当前目录下的文件和文件夹。mkdir&#xff1a;创建新目录。 文…

第三讲、C的运算符和表达式

一、运算符分类&#xff1a; &#xff08;1&#xff09;按运算对象的数目&#xff1a; 单目运算符 双目运算符 三目运算符 &#xff08;2&#xff09;按运算对象的数目&#xff1a; 算术运算符、赋值运算符、关系运算符、逻辑运算符、位运算符、自增自减运算符、…

菜叶子芯酸笔记3:GPU、GPGPU、CUDA之间的关系;CUDA之外;Tensor Core

我今天看到B站一个up主很好的资料【云计算科普研究所的个人空间-云计算科普研究所个人主页-哔哩哔哩视频】&#xff0c;结合我这周的积累整理了这份我觉得相比之前逻辑更加完善的笔记。 先是GPU到GPGPU 到CUDA之间进化关系部分&#xff0c;然后CUDA之外的友商竞品部分&#xf…