【Linux】多线程安全之道:互斥、加锁技术与底层原理

目录

1.线程的互斥

1.1.进程线程间的互斥相关背景概念

1.2.互斥量mutex的基本概念

所以多线程之间为什么要有互斥?

为什么抢票会抢到负数,无法获得正确结果?

为什么--操作不是原子性的呢?

解决方式:

2.三种加锁的方式

2.1全局变量(静态分布)的锁

2.2局部变量(动态分布)的锁

2.3.销毁锁(互斥量)的方式:

2.4.互斥量加锁和解锁

2.5 RAII风格的锁

代码:

3.互斥的底层实现?

1.线程的互斥

1.1.进程线程间的互斥相关背景概念

  • 临界资源:多线程执行流共享的资源就叫做临界资源
  • 临界区:每个线程内部,访问临界资源的代码,就叫做临界区
  • 互斥:任何时刻,互斥保证有且只有一个执行流进入临界区,访问临界资源,通常对临界资源起保护作用
  • 原子性(后面讨论如何实现):不会被任何调度机制打断的操作,该操作只有两态,要么完成,要么未完成

1.2.互斥量mutex的基本概念

  • 大部分情况,线程使用的数据都是局部变量,变量的地址空间在线程栈空间内,这种情况,变量归属单个线程,其他线程无法获得这种变量。
  • 但有时候,很多变量都需要在线程间共享,这样的变量称为共享变量,可以通过数据的共享,完成线程之间的交互。
  • 多个线程并发的操作共享变量,会带来一些问题

所以多线程之间为什么要有互斥?

上面概念有些抽象,我们来看一个实际的例子方便我们理解——抢票系统:

代码:

// 操作共享变量会有问题的售票系统代码
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
int ticket = 100;
void *route(void *arg)
{
char *id = (char*)arg;
while ( 1 ) {
if ( ticket > 0 ) {
usleep(1000);
printf("%s sells ticket:%d\n", id, ticket);
ticket--;
} else {
break;
}
}
}
int main( void )
{
pthread_t t1, t2, t3, t4;
pthread_create(&t1, NULL, route, "thread 1");
pthread_create(&t2, NULL, route, "thread 2");
pthread_create(&t3, NULL, route, "thread 3");
pthread_create(&t4, NULL, route, "thread 4");
pthread_join(t1, NULL);
pthread_join(t2, NULL);
 pthread_join(t3, NULL);
pthread_join(t4, NULL);
}

执行结果:

这是没有加锁(互斥)的代码执行的结果,发现我们抢票抢着抢着竟然抢到了负数!这是万万不行的。

为什么抢票会抢到负数,无法获得正确结果?

共享资源被访问的时候,没有被保护,并且本身操作不是原子的!

  1. if 语句判断条件为真以后,代码可以并发的切换到其他线程
  2. usleep 这个模拟漫长业务的过程,在这个漫长的业务过程中,可能有很多个线程会进入该代码段
  3. --ticket 操作本身就不是一个原子操作

前两者我们好理解,

为什么--操作不是原子性的呢?

ticket需要先从内存中读取数据放在CPU上,然后CPU进行加法或者减法操作,最后再将数据放在内存当中。因此就不是原子性的。

-- 操作并不是原子操作,而是对应三条汇编指令:

  • load :将共享变量ticket从内存加载到寄存器中
  • update : 更新寄存器里面的值,执行-1操作
  • store :将新值,从寄存器写回共享变量ticket的内存地址

解决方式:

要解决以上问题,需要做到三点:

  • 代码必须要有互斥行为:当代码进入临界区执行时,不允许其他线程进入该临界区。
  • 如果多个线程同时要求执行临界区的代码,并且临界区没有线程在执行,那么只能允许一个线程进入该临界区。
  • 如果线程不在临界区中执行,那么该线程不能阻止其他线程进入临界区。

要做到这三点,本质上就是需要一把锁。Linux上提供的这把锁叫互斥量。

2.三种加锁的方式

2.1全局变量(静态分布)的锁

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER

注意这种锁是定义在全局代码段的,这种锁也不需要销毁

2.2局部变量(动态分布)的锁

int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict
attr);
参数:
mutex:要初始化的互斥量
attr:NULL

这种锁需要我们在局部代码段进行定义和初始化,并且也需要我们自己去手动销毁。

2.3.销毁锁(互斥量)的方式:

int pthread_mutex_destroy(pthread_mutex_t *mutex)

注意以上这两种锁的使用都是需要在指定加锁的区域进行加锁和解锁。

2.4.互斥量加锁和解锁

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
返回值:成功返回0,失败返回错误号

2.5 RAII风格的锁

C++注重RAII的编程思想,所以我们可以将锁自己封装成为一个RAII风格的锁

我们可以将锁进行封装,定义一个LockGuard的类,里面只有一个锁的成员变量,构造函数是加锁,析构函数是解锁,所以我们可以创建一个局部的对象,让编译器自己去调用构造函数和析构函数,这样就不需要我们进行加锁和解锁

代码:

#ifndef __LOCK_GUARD_HPP__
#define __LOCK_GUARD_HPP__

#include <iostream>
#include <pthread.h>

class LockGuard
{
public:
    LockGuard(pthread_mutex_t *mutex):_mutex(mutex)
    {
        pthread_mutex_lock(_mutex); // 构造加锁
    }
    ~LockGuard()
    {
        pthread_mutex_unlock(_mutex);//析构解锁
    }
private:
    pthread_mutex_t *_mutex;
};

#endif

在我们学习了如何加锁之后,我们就可以将抢票系统进行进一步的优化:

void route(ThreadData *td)
{
    while (true)
    {
        { // 担心就用这个
            LockGuard guard(&td->_mutex); // 临时对象, RAII风格的加锁和解锁
            //std::lock_guard<std::mutex> lock(td->_mutex);
            //pthread_mutex_lock(&td->_mutex);
            if (td->_tickets > 0) // 1
            {
                usleep(1000);
                printf("%s running, get tickets: %d\n", td->_name.c_str(), td->_tickets); // 2
                td->_tickets--;                                                           // 3
                //pthread_mutex_unlock(&td->_mutex);
                td->_total++;
            }
            else
            {
                //pthread_mutex_unlock(&td->_mutex);
                //td->_mutex.unlock();
                break;
            }
        }
    }
}

执行结果:

可以看出,加锁之后就完美解决了票数会抢到负数的问题!

3.互斥的底层实现?

  • 经过上面的例子,大家已经意识到单纯的 i++ 或者 ++i 都不是原子的,有可能会有数据一致性问题
  • 为了实现互斥锁操作,大多数体系结构都提供了swap或exchange指令,该指令的作用是把寄存器和内存单元的数据相交换,由于只有一条指令,保证了原子性,即使是多处理器平台,访问内存的 总线周期也有先后,一个处理器上的交换指令执行时另一个处理器的交换指令只能等待总线周期。 

所有线程在争锁的时候,只有一个锁,交换的过程,只有一条是汇编——所以该过程是原子的

CPU寄存器硬件只有一套,但是CPU寄存器内部的数据,数据线程的硬件上下文是有多套的。

数据在内存中,所有的线程都能访问,属于共享的。但是如果转移到CPU内部寄存器中,就属于一个线程私有的了!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/895827.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于SpringBoot+Vue的厨艺交流系统的设计与实现(源码+定制开发)厨艺知识与美食交流系统开发、在线厨艺分享与交流平台开发、智能厨艺交流与分享系统开发

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…

第五届人工智能与教育国际学术会议(ICAIE 2024)

文章目录 一、会议详情二、重要信息三、大会介绍四、出席嘉宾五、征稿主题六、咨询 一、会议详情 二、重要信息 大会官网&#xff1a;https://ais.cn/u/vEbMBz提交检索&#xff1a;EI Compendex、IEEE Xplore、Scopus 三、大会介绍 第五届人工智能与教育国际学术会议&#x…

java逻辑运算符 C语言结构体定义

1. public static void main(String[] args) {System.out.println(true&true);//&两者均为true才trueSystem.out.println(false|false);// | 两边都是false才是falseSystem.out.println(true^false);//^ 相同为false&#xff0c;不同为trueSystem.out.println(!false)…

【python爬虫实战】爬取全年天气数据并做数据可视化分析!附源码

由于篇幅限制&#xff0c;无法展示完整代码&#xff0c;需要的朋友可在下方获取&#xff01;100%免费。 一、主题式网络爬虫设计方案 1. 主题式网络爬虫名称&#xff1a;天气预报爬取数据与可视化数据 2. 主题式网络爬虫爬取的内容与数据特征分析&#xff1a; - 爬取内容&am…

蜜罐技术的出现究竟影响了什么

自网络诞生以来&#xff0c;攻击威胁事件层出不穷&#xff0c;网络攻防对抗已成为信息时代背景下的无硝烟战争。然而&#xff0c;传统的网络防御技术如防火墙、入侵检测技术等都是一种敌暗我明的被动防御&#xff0c;难以有效应对攻击者随时随地发起的无处不在的攻击和威胁。蜜…

IO多路复用概述与epoll简介

一、引言 在网络编程中&#xff0c;高并发的场景下处理大量连接请求是一项挑战。传统的阻塞式IO模型会让线程在等待数据的过程中陷入停顿&#xff0c;导致系统效率低下。为了解决这个问题&#xff0c;IO多路复用应运而生。它允许一个线程同时监听多个文件描述符&#xff08;如…

Gin框架操作指南02:JSON渲染

官方文档地址&#xff08;中文&#xff09;&#xff1a;https://gin-gonic.com/zh-cn/docs/ 注&#xff1a;本教程采用工作区机制&#xff0c;所以一个项目下载了Gin框架&#xff0c;其余项目就无需重复下载&#xff0c;想了解的读者可阅读第一节&#xff1a;Gin操作指南&#…

qt creator 开发环境的安装

1.找官网 官网地址&#xff1a;Installation | Qt Creator Documentation 点 Parent Directory 继续点 Parent Directory 点 archive/ 2.下载在线安装器 点 online_ainstallers 选择在线安装器版本 选择对应版本后进入下载列表&#xff0c;根据自己的系统选择下载。 下载后…

DreamFace 4.7.1 | 图片说话,数字人

DreamFace是一款可以把静态图片变成动态视频的软件&#xff0c;操作简单&#xff0c;内置多种模板可供选择。此外&#xff0c;还支持将图片变得更清晰或者转换成卡通风格等功能&#xff0c;非常适合喜欢创意视频制作的用户。通过安装软件后&#xff0c;根据提示选择需要转换的静…

c++ pdf文件提取txt文本示例

最近抽空采用之前封装的接口将pdf文件提取出txt文本&#xff0c;顺利完成&#xff0c;界面如下所示&#xff1a; 提起的效果如下所示&#xff1a; 输出的txt文本内容如下&#xff1a; 下载链接&#xff1a;https://download.csdn.net/download/u011269801/89905548

vue中如何检测数组变化(vue基础,面试,源码级讲解)

大家有什么不明白的地方可以分享在评论区&#xff0c;大家一起探讨哦~~ &#xff08;如果对数据劫持还有所不明白的小伙伴&#xff0c;可以去看看上一篇文章哦&#xff09; 在vue2中&#xff0c;是如何对数组进行劫持的呢&#xff1f; 简单代码实现&#xff1a; 在vue2中&…

pytorh学习笔记——cifar10(三)模仿VGGNet创建卷积网络

VGG16是由牛津大学视觉几何组&#xff08;Visual Geometry Group&#xff09;提出的一种深度卷积神经网络模型。 VGGNet 探索了卷积神经网络的深度与其性能之间的关系&#xff0c;成功地构筑了 16~19 层深的卷积神经网络&#xff0c;同时拓展性又很强&#xff0c;迁移到其它图片…

反转链表 K个一组翻转链表

目录 LeetCode206 反转链表 LeetCode92 反转链表II LeetCode25 K个一组翻转链表 LeetCode206 反转链表 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x)…

poisson过程——随机模拟(Python和R实现)

Python实现 exponential()使用&#xff0c;自动poisson过程实现。 import numpy as np import matplotlib.pyplot as plt# Parameters lambda_rate 5 # rate parameter (events per time unit) T 10 # total time# Generate Poisson process times np.random.exponential(…

PCL 点云配准 Trimed-ICP算法(精配准

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 perform_standard_icp 函数 2.1.2 perform_trimmed_icp 函数 2.1.3 visualize_registration 函数 2.2完整代码 PCL点云算法汇总及实战案例汇总的目录地址链接&#xff1a; PCL点云算…

软件设计模式------简单工厂模式

简单工厂模式&#xff08;Simple factory Pattern&#xff09;&#xff0c;又称静态工厂方法(Static Factory Method),属于创新型模式&#xff0c;但它不属于GoF23个设计模式其一。 一、模式动机&#xff1a; 有时需要创建一些来自相同父类的类的实例。 二、定义&#xff1a…

(二十)、从宿主机访问 k8s(minikube) 发布的 redis 服务

文章目录 1、环境准备2、具体操作2.1、启动 minikube (start/stop)2.2、准备 redis-deployment.yaml2.3、执行 redis-deployment.yaml2.3.1、查看 pod 信息和日志 2.4、检查部署和服务状态2.4.1、如果需要删除 3、查看 IP 的几个命令3.1、查看IP的几个命令3.2、解读3.3、宿主机…

【C语言】数据输出格式控制

数据的输出格式修饰 常用两种&#xff1a; 整型中&#xff0c;输出数据左对齐、右对齐、占m位、不足m位前补0。浮点型中&#xff0c;默认通过四舍五入保留小数点后6位&#xff0c;通过参数设置保留小数点后n位。 #include <stdio.h> #define PI 3.14159 /* 功能&#x…

D43【python 接口自动化学习】- python基础之函数

day43 装饰器&#xff08;上&#xff09; 学习日期&#xff1a;20241020 学习目标&#xff1a;函数&#xfe63;- 56 装饰器&#xff1a;函数嵌套的定义与调用的区别 学习笔记&#xff1a; 变量作用域 变量读取顺序&#xff1a;local-》enclosed-》global-》builtin # 变量…

Spring MessageSource国际化原理

spring framework提供MessasgeSource来实现国际化。 MessageSource用法 准备properties文件&#xff0c;放在resources文件夹下面。这是默认语言和韩语的文件。 i18n/message.propertiesi18n/message_ko.properties 文件里面的内容是key-value格式,使用{0}、{1}作为变量占位…