软考(网工)——局域网和城域网

🕐局域网基础

1️⃣局域网和城域网体系架构 IEEE(负责链路层)



2️⃣局域网拓扑结构

  • 局域网的主要特征由网络的拓扑结构、所采用的协议类型,以及介质访问控制方法决定。
  • 局域网的拓扑结构是指连接网络设备的传输介质的铺设形式,局域网的拓扑结构主要有星型、总线型、环型和混合型。





🕑CSMA/CD

1️⃣CSMA/CD

  • 对总线型、星型和树型拓扑访问控制协议是CSMA/CD(Carrier Sense Multiple Access/Collision Detection,载波侦听多路访问/冲突检测)。
  • CSMA基本原理:发送数据之前,先监听信道上是否有人在发送。若有,说明信道正忙,否则说明信道是空闲的,然后根据预定的策略决定:
    • (1)若信道空闲,是否立即发送。
    • (2)若信道忙,是否继续监听。
    • 如果连续发生16次碰撞后,认为网络繁忙或故障,不再尝试发送。


2️⃣CSMA/CD三种监听算法

(1)非坚持型监听算法:后退随机时间(常考)

由于随机时延后退,从而减少了冲突的概率。问题是因为后退而使信道闲置一段时间,这使信道的利用率降低,而且增加了发送时延。

(2)1-坚持型监听算法:继续监听,不等待(常考)

有利于抢占信道,减少信道空闲时间。但是,多个站同时都在监听信道时必然会发生冲突。冲突概率和利用率都高(双高)

(3)P-坚持型监听算法

若信道空闲,以概率P发送,以概率(1-P)延迟一个时间单位,P大小可调整。





3️⃣冲突检测原理

  • 载波监听只能减小冲突的概率,不能完全避免冲突(选择题常考)。当两个帧发生冲突后,若继续发送,将会浪费网络带宽。为了改进带宽利用率,发送站应采取边发边听的冲突检测方法,即:
    • (1)发送期间同时接收,并把接收的数据与站中存储的数据进行比较。
    • (2)若比较结果一致,说明没有冲突,重复(1)。
    • (3)若比较结果不一致,说明发生了冲突,立即停止发送,并发送一个简短的干扰信号(amming),使所有站都停止发送。
    • (4)发送信号后,等待一段随机长的时间,重新监听,再试着发送。






🕒二进制指数退避算法

1️⃣ 二进制指数退避算法

  • 二进制指数退避算法工作原理如下:
  • (1)检测到冲突后,马上停止发送数据,并等待随机时间再发送数据。
  • (2)等待的随机时间 = t * Random[0,1, ……2k-1] ,其中Random表示随机函数。其中t是基本退避时间,可以看作固定值。k = min[重传次数,10],如果重传16次后,还不能正常发送数据,认为网络拥塞或信道故障,不再尝试重传。根据公式,如果重传12次后, k = min[12,10] = 10 ,那么可能等待的时间是t * Random[0,1023],一共有1024种可能。每次站点等待的时间都是随机数,故后一次退避时间不一定比前一次长。重传次数越多,退避窗口(即Random取值)越大,从而降低冲突概率。
  • 如果连续发生16次碰撞后,认为网络繁忙或故障,不再尝试发送。







🕓最小帧长计算

1️⃣最小帧长计算

  • 最小帧长公式 Lmin=2R * d/v
    • R为网络数据速率,d为最大距离,v为传播速度
      • 光纤信道:v = 300000km/s 电缆: v = 200000km/s
    • 不冲突条件:发送时间 ≥ 传送时间 + 确认时间
    • L/R ≥ 2 * d/v ,则推出最小帧长公式





🕔以太网帧结构和物理层标准

1️⃣以太网帧结构

  • 前面7+1字节用于时钟同步,不算入帧长。
  • 数据46-1500字节,不够至少填充到46字节。
  • 校验位4字节,CRC循环冗余校验32位。
    • 最小帧长64字节:6+6+2+46+4=64。
    • 最大帧长1518字节:6+6+2+1500+4=1518。



2️⃣以太网报文封装



3️⃣802.3 以太网(10M)

  • 物理介质命名规范:<font style="color:#DF2A3F;"><传输速率Mbps><信号方式><最大传输距离(百米)或介质类型></font>



4️⃣快速以太网 802.3u(100M)

  • 快速以太网是历年考试重点,需要掌握几种标准的传输介质(使用2对还是4对,采用屏蔽线还是非屏蔽线。UTP为非屏蔽双绞线,STP为屏蔽双绞线)。其中,100Base-TX采用4B/5B编码。




5️⃣千兆以太网(1000M)(常考)

  • 千兆以太网两个标准 802.3z 和 802.3ab(1000BASE-T) ),千兆需要4对双绞线,达到100米传输。
  • 1000BASE-LX标准可以使用单模和多模光纤传输。
  • 千兆以太网编码方法:4B/5B或8B/9B。




6️⃣万兆以太网 802.3ae(10G)

  • 万兆以太网标准:IEEE802.3ae,支持10G速率,可用光纤或者双绞线传输。
  • 万兆以太网基本应用于点到点线路,不再共享带宽,没有冲突检测,载波监听和多路访问技术也不再重要。万兆以太网和万兆以太网采用与传统以太网同样的帧结构。





🕕虚拟局域网 VLAN

1️⃣VLAN 基础

  • 虚拟局域网(Virtual Local Area Netwok , VLAN )
    • 根据管理功能、组织机构或应用类型对交换局域网进行分段而形成的逻辑网络。
    • 不同VLAN通信必须经过三层设备:路由器、三层交换机、防火墙等。
    • 虚拟局域网工作站可以不属于同一物理网段,任何交换端口都可以分配给某个VLAN,属于同一VLAN的所有端口构成一个广播域。
    • 冲突域和广播域,一个中继器和集线器是一个冲突域,一个VLAN为一个广播域,交换机的一个接口为一个冲突域。


2️⃣冲突域

  • 冲突域是指连接在同一共享介质上的所有节点的集合,冲突域内所有节点竞争同一带宽,一个节点发出的报文(无论是单播、组播、广播),其余节点都可以收到。

  • 在传统的以太网中,同一介质上的多个节点共享链路带宽,争用链路的使用权,这样就会发生冲突。
  • 同一介质上的节点越多,冲突发生的概率越大。

  • 交换机不同的接口发送和接收数据独立,各接口属于不同的冲突域,因此有效地隔离了网络中物理层冲突域,使得通过它互连的主机(或网络)之间不必再担心流量大小对于数据发送冲突的影响。
  • 集线器在一个冲突域,交换机的一个接口是一个冲突域。



3️⃣广播域

  • 广播报文所能到达的整个访问范围称为二层广播域,简称广播域,同一广播域内的主机都能收到广播报文。

在传统的以太网中,同一介质上的多个节点共享链路,一台设备发出的广播报文,所有设备均会收到。

交换机对广播报文会向所有的接口都转发,所以交换机的所有接口连接的节点属于一个广播域,路由器每个接口是一个广播域。



4️⃣交换机 VLAN 划分

  • 静态划分VLAN:基于交换机端口。
  • 动态划分VLAN: 基于MAC地址、基于策略、基于网络层协议、基于网络层地址(填空题)。




5️⃣VLAN 划分配置

  • (1)静态划分VLAN。手动把交换机的某些接口加入到某个VLAN,配置如下:
[Huawei] vlan 10 //创建VLAN 10
[Huawei-vlan10] quit//出	
[Huawei] interface GigabitEthernet0/0/1//进入接口
[Huawei-GigabitEthernet0/0/1] port link-type access //把接口设置成access
[Huawei-GigabitEthernet0/0/1] port default vlan 10 //把接口加入VLAN 10
  • (2)动态划分VLAN。根据MAC地址、网络层地址、网络层协议、IP广播域或管理策略划分。
    • 1)基于MAC地址进行VLAN划分配置:
[Huawei] vlan 20 //VLAN 20
[Huawei-vlan20] mac-vlan mac-address 5489-98FC-5825 //把MAC地址为5489-98FC-5825的终端加入VLAN 20
      -2)基于策略进行VLAN划分配置:
[Huawei] vlan 20 //创建VLAN 20
[Huawei-vlan20] policy-vlan mac-address 0-1-1 ip 10.1.1.1 priority 7
//基于策略划分VLAN,把MAC地址为0-1-1,IP地址为1.1.1.1的主机划分到VLAN20中,并配置该VLAN的802.1p优先级是7


6️⃣VLAN 作用

  • (1)控制网络流量。一个VLAN内部的通信(包括广播通信)不会转发到其他VLAN中去,从而有助于控制广播风暴,减小冲突域,提高网络带宽的利用率。
  • (2)提高网络的安全性。可以通过配置VLAN之间的路由来提供广播过滤、安全和流量控制等功能。不同VLAN之间的通信受到限制,提高了企业网络的安全性。
  • (3)灵活的网络管理。VLAN机制使得工作组可以突破地理位置的限制而根据管理功能来划分。如果根据MAC地址划分VLAN,用户可以在任何地方接入交换网络,实现移动办公。


7️⃣802.1Q标签

  • 802.1Q标签字段,重点掌握PRI和VID。
    • PRI(3位):Priority表示优先级,提供0~7共8个优先级,当有多个帧等待发送时,按优先级顺序发送数据包。
    • VID(12位):即VLAN标识符,最多可以表示 212=4096 个VLAN,其中VID0用于识别优先级,VID4095保留未用,所以最多可配置4094个VLAN。默认管理VLAN是1,不能删除。
    • 交换机添加和删除VLAN标签的过程由专用硬件自动实现,处理速度很快,不会引入太大的延迟(选择题)
      从用户角度看,数据源产生标准的以太帧,目标接收的也是标准的以太帧,VLAN标记对用户是透明的。



8️⃣交换机端口类型

  • Access接口:只能传送单个VLAN数据,一般用于连接PC/摄像头等终端。
  • Trunk接口:能传送多个VLAN数据,一般用于交换机之间互联。
  • Hybrid接口:混合接口,包含access和trunk属性。
  • QinQ: 双层标签,一般用于运营商城域网。






🕖生成树协议 STP

1️⃣生成树技术背景

  • 交换机单链路上行,存在单点故障,线路和设备都不具备冗余性。
  • 任何一条链路或者设备故障,网络将面临断网。

  • 冗余拓扑能够解决单点故障问题。
  • 但是冗余拓扑带来了二层环路问题。
  • 实际网络环境中,经常产生二层环路从而引发网络故障。



2️⃣二层环路问题——广播风暴

  • 网络中若存在二层环路,一旦出现广播数据帧,这些数据帧将被交换机不断泛洪,造成广播风暴。
  • 广播风暴对网络危害非常大,将严重消耗设备CPU资源及网络带宽,需要格外注意。
  • 广播风暴现象:网络慢、所有指示灯高速闪烁、CPU使用率高、CLI卡顿。



3️⃣二层环路问题——MAC 表震荡

  • PC发送数据帧给Server
  • SW3没有目的MAC表项,于是将数据帧进行泛洪
  • SW1和SW2都收到这个帧并学习源MAC,同时将数据帧进一步泛洪
  • SW3将从GE0/0/1和GE0/0/2都收到这个帧并学习源MAC,更新MAC地址表





4️⃣复杂冗余性网络环境存在更多的物理二层环路




5️⃣STP 概念

  • 采用生成树 (Spansing-tree) 技术,能够在网络中存在二层环路时,通过逻辑阻塞(Block)特定端口,从而打破环路,并且在网络出现拓扑变更时及时收敛,保障网络冗余性。



6️⃣STP 基本概念(当网络出现故障)

  • 在网络出现拓扑变更时及时收敛,保障网络冗余性。



7️⃣网桥 ID(Birdge ID)

  • 桥ID一共8个字节,由2个字节优先级和6个字节的MAC地址构成。
    • 桥优先级默认为32768,可以手工修改。(越小越优先)
    • MAC地址为交换机背板MAC。



8️⃣路径开销(Path Cost)

  • 路径开销是一个端口量,是STP/RSTP协议用于选择链路的参考值。
  • 端口路径开销的默认值及取值范围由选定的路径开销算法决定,路径开销与端口带宽成反比。
  • 华为设备路径开销标准有:802.1d-1998、802.1t及私有的legacy,默认为802.1t标准。




9️⃣STP 选举操作

1.确定一个根桥(Root Bridge)【选优先级和MAC地址最小的网桥】

2.确定其他网桥的根端口(RootPort)【非根桥的端口到根桥最近的端口】

3.每个段选择一个指定端口(DesignatedPort)【先选指定桥,指定桥上为指定端口】

4.选出非指定端口(NonDesignated Port )

























🔟几种生成树协议

  • 生成树协议:802.1dSTP(慢,拓扑收敛需要30-50s)
  • 快速生成树协议802.1wRSTP(快,6s内完成收敛)
  • 多生成树协议802.1sMSTP(实现多个VLAN负载均衡)







🕗城域网基础

1️⃣城域网

  • (1)E-LAN技术是802.1Q的VLAN帧标记,双层标记,打了两层VLAN标签,这种技术被定义为IEEE802.1ad,也称为QinQ技术。
    • QinQ实际是把用户VLAN嵌套在运营商城域以太网VLAN中传送。
  • (2)IEEE802.1ah,也称为PBB,也叫MAC-IN-MAC技术。






🕘章节总结

  • 802标准:802.3以太网,802.11无线局域网WLAN。
  • CSMA/CD: 以太网介质访问控制协议,原理:先听后发,边听边发,若有冲突,立即停止。
  • 监听算法:非坚持型, 1- 坚持型(双高),P - 坚持型。二进制指数退避算法。
  • 二进制退避算法:等待的随机时间 = t * Random[0, 1, ……2k-1] , k=min[重传次数,10]。
  • 最小帧长 : Lmin = 2R * d/V。
  • MAC帧结构、以太网传输介质、VLAN技术和STP计算过程。
  • 两种城域网技术:QinQ和MAinMAC。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/895352.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

在SpringBoot项目中利用Redis实现防止订单重复提交

文章目录 0. 前言1. 常见的重复提交订单的场景2. 防止订单重复提交的解决方案2.1 前端&#xff08;禁用按钮&#xff09;2.2 后端 3. 在SpringBoot项目中利用Redis实现防止订单重复提交3.1 引入依赖3.2 编写配置文件3.3 OrderService.java3.4 OrderController.java3.5 index.ht…

HTML快速入门--第一节--五个基本标签

一、网络编程的三大基石 1.1 url 统一资源定位符&#xff1a; 网址:整个互联网中可以唯一且准确的确定一个资源的位置 (url项目外) 网址:https://www.baidu.com/ https://www.baidu.com/ 协议://ip端口/项目名/页面名 协议:交通法规获取资源 ip端口 &#xff08;域名&…

Java | Leetcode Java题解之第479题最大回文数乘积

题目&#xff1a; 题解&#xff1a; class Solution {public int largestPalindrome(int n) {if (n 1) {return 9;}int upper (int) Math.pow(10, n) - 1;int ans 0;for (int left upper; ans 0; --left) { // 枚举回文数的左半部分long p left;for (int x left; x >…

Redis实现全局ID生成器

全局ID生成器 为什么要用全局ID生成器 1.当我们使用数据库自增来实现id的生成时,规律过于明显,会给用户暴露很多信息 2.当我们订单量过大时无法用数据库的一张表来存放订单,如果两张表的id都是自增的话,id就会出现重复 什么是全局ID生成器 全局ID生成器,是一种在分布式系统…

LabVIEW提高开发效率技巧----用户权限控制

在LabVIEW开发中&#xff0c;用户权限控制是一个重要的设计模块&#xff0c;尤其在多用户系统中&#xff0c;它可以确保数据安全并控制不同用户的操作权限。为了实现用户权限控制&#xff0c;可以通过角色与权限管理模块来进行设计和实施。以下将从多个角度详细说明如何在LabVI…

房子,它或许是沃土

刚成家&#xff0c;来客时&#xff0c;它是客房 成家后&#xff0c;没小孩&#xff0c;它是书房 有小孩&#xff0c;未分房&#xff0c;它暂且是书房 孩子大些&#xff0c;它是孩子们埋下梦想种子&#xff0c;生根发芽的地方

基于SSM果蔬经营系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;商品信息管理&#xff0c;类型管理&#xff0c;系统管理&#xff0c;订单管理 前台账号功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;商品信息&#xff0c;广告…

微信小程序:miniprogram-ci自动打包工具使用介绍以及支持配置环境变量、jekins打包、taro、uni-app三方工具

微信小程序&#xff1a;miniprogram-ci自动打包工具使用介绍以及支持配置环境变量、jekins打包、taro、uni-app三方工具 背景介绍 一直都是本地电脑运行微信开发者工具打包上传。多项目中新老版本对node版本要求不一致&#xff0c;老是切来切去。而且同一个人开发上传需要打包…

揭秘Map与Set的键值奥秘与集合魅力,解锁高效数据魔法

文章目录 前言➰一、关联式容器1.1 关联式容器的概述1.2 关联式容器的工作原理1.3 关联式容器的核心特性 ➰二、键值对2.1 键值对的基本概念2.2 键值对在C中的实现 ➰三、树形结构的关联式容器3.1 树形结构的特点3.2 使用场景 ➰四、set的使用与定义4.1 set的基本特性4.2 set的…

centOS实用命令

一、查看进程&#xff0c;端口占用 netstat命令(window和linux通用&#xff0c;细节不同) 查看端口占用(linux) netstat -ano |grep 8080查看端口占用(window) netstat -ano |findstr 8080ps命令 可以直接使用ps aux查看所有用户的进程信息 一些参数 参数解释-p根据进程P…

【D3.js in Action 3 精译_034】4.1 D3 中的坐标轴的创建(中篇):定义横纵坐标轴的比例尺

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 第一部分 D3.js 基础知识 第一章 D3.js 简介&#xff08;已完结&#xff09; 1.1 何为 D3.js&#xff1f;1.2 D3 生态系统——入门须知1.3 数据可视化最佳实践&#xff08;上&#xff09;1.3 数据可…

企业资产安全之数据防泄密要领

在数字化时代&#xff0c;数据已成为企业最宝贵的资产之一。然而&#xff0c;随着数据价值的增加&#xff0c;数据泄露的风险也随之上升。从内部员工的无意泄露到外部黑客的恶意攻击&#xff0c;企业数据安全面临着前所未有的挑战。SDC沙盒数据防泄密解决方案&#xff0c;正是为…

用 Python 构建高级配对交易策略

作者&#xff1a;老余捞鱼 原创不易&#xff0c;转载请标明出处及原作者。 写在前面的话&#xff1a; 本文阐述通过分析加密货币和传统金融工具之间的相关性和协整性&#xff0c;以及实施 Z-score 方法来生成交易信号&#xff0c;然后介绍如何使用 Python 构建配对交易策…

无人机搭载激光雷达在地形测绘中的多元应用

一、高精度地形测量 无人机激光雷达能够发射激光脉冲并接收其回波&#xff0c;通过精确计算激光脉冲的往返时间来确定目标物的距离。这一特性使得无人机激光雷达在地形测绘中能够实现高精度的三维地形测量。通过快速获取大量地形数据&#xff0c;可以生成高精度的数字高程模型…

VScode背景更改

效果 实现方法 第0步 以管理员身份运行VScode 首先 需要安装这个扩展 然后 接下来 找到配置文件 再后来 在配置文件的下面但不超过最后一个大括号的地方加入以下内容 "update.enableWindowsBackgroundUpdates": true,"background.fullscreen": {…

Gee引擎配置微端后登录游戏黑屏怎么办?

GEE引擎配置微端后登录游戏黑屏怎么办&#xff1f;今天飞飞和你们分享GEE引擎配置微端后游戏黑屏的解决办法&#xff0c;希望可以帮助到你~ 1、端口不对 微端没有更新&#xff0c;玩家进入游戏是地图跟装备都看不见&#xff0c;是漆黑的&#xff0c;微端显示连接失败&#xff…

Leecode刷题之路第26天之删除有序数组中的重复项

题目出处 26-删除有序数组中的重复项-题目出处 题目描述 给你一个 非严格递增排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元…

鸿蒙网络编程系列31-使用RCP调用OpenAI接口实现智能助手

简介 在OpenAI推出GPT系列大模型以后&#xff0c;市场上各种类似的大模型也层出不穷&#xff0c;这些大模型也基本都会兼容OpenAI的接口&#xff0c;在开发基于大模型的应用时&#xff0c;选择使用OpenAI接口作为和后端大模型通讯的标准&#xff0c;可以更好的适配不同厂家的模…

2024年五一杯数学建模C题煤矿深部开采冲击地压危险预测求解全过程论文及程序

2024年五一杯数学建模 C题 煤矿深部开采冲击地压危险预测 原题再现&#xff1a; “煤炭是中国的主要能源和重要的工业原料。然而&#xff0c;随着开采深度的增加&#xff0c;地应力增大&#xff0c;井下煤岩动力灾害风险越来越大&#xff0c;严重影响着煤矿的安全高效开采。在…

一个人如何开发一款App软件

个人开发软件和公司开发软件不一样&#xff0c;其中就是收费上&#xff0c;个人开发的费用低&#xff0c;售后服务态度好啊。一个人负责开发也负责售后&#xff0c;客户就你一个。一般都是工作室和个人接单的多&#xff0c;不是太大的项目就建议是个人开发吧&#xff0c;因为能…