03 设计模式-创造型模式-单例模式

单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。

这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象。

单例模式是一种创建型设计模式,它确保一个类只有一个实例,并提供了一个全局访问点来访问该实例。

注意:

  • 1、单例类只能有一个实例。
  • 2、单例类必须自己创建自己的唯一实例。
  • 3、单例类必须给所有其他对象提供这一实例。

设计模式,最近持续更新中,如需要请关注

如果你觉得我分享的内容或者我的努力对你有帮助,或者你只是想表达对我的支持和鼓励,请考虑给我点赞、评论、收藏。您的鼓励是我前进的动力,让我感到非常感激。

文章目录

  • 1 概要
  • 2 实现
  • 3 Demo代码
    • 3.1 懒汉式,线程不安全
    • 3.2 懒汉式,线程安全
    • 3.3 饿汉式
    • 3.4 双检锁/双重校验锁(DCL,即 double-checked locking)
    • 3.5 登记式/静态内部类
    • 3.6 枚举
  • 4 开发案例

1 概要

意图
确保一个类只有一个实例,并提供一个全局访问点来访问该实例。

主要解决
频繁创建和销毁全局使用的类实例的问题。

何时使用
当需要控制实例数目,节省系统资源时。

如何解决
检查系统是否已经存在该单例,如果存在则返回该实例;如果不存在则创建一个新实例。

关键代码
构造函数是私有的。

应用实例

  • 一个班级只有一个班主任。
  • Windows 在多进程多线程环境下操作文件时,避免多个进程或线程同时操作一个文件,需要通过唯一实例进行处理。
  • 设备管理器设计为单例模式,例如电脑有两台打印机,避免同时打印同一个文件。

优点

  • 内存中只有一个实例,减少内存开销,尤其是频繁创建和销毁实例时(如管理学院首页页面缓存)。
  • 避免资源的多重占用(如写文件操作)。

缺点

  • 没有接口,不能继承。
  • 与单一职责原则冲突,一个类应该只关心内部逻辑,而不关心实例化方式。
    使用场景
  • 生成唯一序列号。
  • WEB 中的计数器,避免每次刷新都在数据库中增加计数,先缓存起来。
  • 创建消耗资源过多的对象,如 I/O 与数据库连接等。

注意事项

  • 线程安全: getInstance() 方法中需要使用同步锁 synchronized (Singleton.class) 防止多线程同时进入造成实例被多次创建。
  • 延迟初始化: 实例在第一次调用 getInstance() 方法时创建。
  • 序列化和反序列化: 重写 readResolve 方法以确保反序列化时不会创建新的实例。
  • 反射攻击: 在构造函数中添加防护代码,防止通过反射创建新实例。
  • 类加载器问题: 注意复杂类加载环境可能导致的多个实例问题。

结构
单例模式包含以下几个主要角色:

  • 单例类: 包含单例实例的类,通常将构造函数声明为私有。
  • 静态成员变量: 用于存储单例实例的静态成员变量。
  • 获取实例方法: 静态方法,用于获取单例实例。
  • 私有构造函数: 防止外部直接实例化单例类。
  • 线程安全处理: 确保在多线程环境下单例实例的创建是安全的。

2 实现

我们将创建一个 SingleObject 类。SingleObject 类有它的私有构造函数和本身的一个静态实例。

SingleObject 类提供了一个静态方法,供外界获取它的静态实例。SingletonPatternDemo 类使用 SingleObject 类来获取 SingleObject 对象。

在这里插入图片描述
创建一个 Singleton 类。

public class SingleObject {
 
   //创建 SingleObject 的一个对象
   private static SingleObject instance = new SingleObject();
 
   //让构造函数为 private,这样该类就不会被实例化
   private SingleObject(){}
 
   //获取唯一可用的对象
   public static SingleObject getInstance(){
      return instance;
   }
 
   public void showMessage(){
      System.out.println("Hello World!");
   }
}

从 singleton 类获取唯一的对象。

public class SingletonPatternDemo {
   public static void main(String[] args) {
 
      //不合法的构造函数
      //编译时错误:构造函数 SingleObject() 是不可见的
      //SingleObject object = new SingleObject();
 
      //获取唯一可用的对象
      SingleObject object = SingleObject.getInstance();
 
      //显示消息
      object.showMessage();
   }
}

3 Demo代码

3.1 懒汉式,线程不安全

/*
1、懒汉式,线程不安全
是否 Lazy 初始化:是

是否多线程安全:否

实现难度:易

描述:这种方式是最基本的实现方式,这种实现最大的问题就是不支持多线程。因为没有加锁 synchronized,所以严格意义上它并不算单例模式。
这种方式 lazy loading 很明显,不要求线程安全,在多线程不能正常工作。
 */
public class Singleton_1 {
    private static Singleton_1 instance;

    private Singleton_1() {
    }

    public static Singleton_1 getInstance() {
        if (instance == null) {
            instance = new Singleton_1();
        }
        return instance;
    }
}

接下来介绍的几种实现方式都支持多线程,但是在性能上有所差异。

3.2 懒汉式,线程安全

/*
2、懒汉式,线程安全
是否 Lazy 初始化:是

是否多线程安全:是

实现难度:易

描述:这种方式具备很好的 lazy loading,能够在多线程中很好的工作,但是,效率很低,99% 情况下不需要同步。
优点:第一次调用才初始化,避免内存浪费。
缺点:必须加锁 synchronized 才能保证单例,但加锁会影响效率。
getInstance() 的性能对应用程序不是很关键(该方法使用不太频繁)。
 */
public class Singleton_2 {
    private static Singleton_2 instance;

    private Singleton_2() {
    }

    public static synchronized Singleton_2 getInstance() {
        if (instance == null) {
            instance = new Singleton_2();
        }
        return instance;
    }
}

3.3 饿汉式

/*
3、饿汉式
是否 Lazy 初始化:否

是否多线程安全:是

实现难度:易

描述:这种方式比较常用,但容易产生垃圾对象。
优点:没有加锁,执行效率会提高。
缺点:类加载时就初始化,浪费内存。
它基于 classloader 机制避免了多线程的同步问题,不过,instance 在类装载时就实例化,虽然导致类装载的原因有很多种,在单例模式中大多数都是调用 getInstance 方法, 但是也不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化 instance 显然没有达到 lazy loading 的效果。
 */
public class Singleton_3 {
    private static Singleton_3 instance = new Singleton_3();

    private Singleton_3() {
    }

    public static Singleton_3 getInstance() {
        return instance;
    }
}

3.4 双检锁/双重校验锁(DCL,即 double-checked locking)

/*
4、双检锁/双重校验锁(DCL,即 double-checked locking)
JDK 版本:JDK1.5 起

是否 Lazy 初始化:是

是否多线程安全:是

实现难度:较复杂

描述:这种方式采用双锁机制,安全且在多线程情况下能保持高性能。
getInstance() 的性能对应用程序很关键。
 */
public class Singleton_4 {
    private volatile static Singleton_4 singleton;

    private Singleton_4() {
    }

    public static Singleton_4 getSingleton() {
        if (singleton == null) {
            synchronized (Singleton_4.class) {
                if (singleton == null) {
                    singleton = new Singleton_4();
                }
            }
        }
        return singleton;
    }
}

3.5 登记式/静态内部类

/*
5、登记式/静态内部类
是否 Lazy 初始化:是

是否多线程安全:是

实现难度:一般

描述:这种方式能达到双检锁方式一样的功效,但实现更简单。对静态域使用延迟初始化,应使用这种方式而不是双检锁方式。这种方式只适用于静态域的情况,双检锁方式可在实例域需要延迟初始化时使用。
这种方式同样利用了 classloader 机制来保证初始化 instance 时只有一个线程,它跟第 3 种方式不同的是:第 3 种方式只要 Singleton 类被装载了,那么 instance 就会被实例化(没有达到 lazy loading 效果),而这种方式是 Singleton 类被装载了,instance 不一定被初始化。因为 SingletonHolder 类没有被主动使用,只有通过显式调用 getInstance 方法时,才会显式装载 SingletonHolder 类,从而实例化 instance。想象一下,如果实例化 instance 很消耗资源,所以想让它延迟加载,另外一方面,又不希望在 Singleton 类加载时就实例化,因为不能确保 Singleton 类还可能在其他的地方被主动使用从而被加载,那么这个时候实例化 instance 显然是不合适的。这个时候,这种方式相比第 3 种方式就显得很合理。
 */
public class Singleton_5 {
    private static class SingletonHolder {
        private static final Singleton_5 INSTANCE = new Singleton_5();
    }

    private Singleton_5() {
    }

    public static final Singleton_5 getInstance() {
        return SingletonHolder.INSTANCE;
    }
}

3.6 枚举

/*
6、枚举
JDK 版本:JDK1.5 起

是否 Lazy 初始化:否

是否多线程安全:是

实现难度:易

描述:这种实现方式还没有被广泛采用,但这是实现单例模式的最佳方法。它更简洁,自动支持序列化机制,绝对防止多次实例化。
这种方式是 Effective Java 作者 Josh Bloch 提倡的方式,它不仅能避免多线程同步问题,而且还自动支持序列化机制,防止反序列化重新创建新的对象,绝对防止多次实例化。不过,由于 JDK1.5 之后才加入 enum 特性,用这种方式写不免让人感觉生疏,在实际工作中,也很少用。
不能通过 reflection attack 来调用私有构造方法。
 */
public enum  Singleton_6 {
    INSTANCE;
    public void whateverMethod() {
        System.out.println("whateverMethod");
    }
}

4 开发案例

算法执行服务创建hdfs连接,使用的单例模式,初始化一下

public class HdfsConnection {
    private static final Logger LOGGER = LoggerFactory.getLogger(HdfsConnection.class);

    private static HdfsConnection instance;

    /**
     * Gets instance.
     *
     * @return the instance
     */
    public static synchronized HdfsConnection getInstance(String installScenarios) {
        if (instance != null) {
            return instance;
        }
        return instance = new HdfsConnection(installScenarios);
    }

    private FileSystem fs;

    private HdfsConnection(String installScenarios) {
        LOGGER.info("Init HDFS Connection start!");
        // 读取配置
        HdfsConfig hdfsConfig = ReadHdfsConfig.getHdfsConfig(installScenarios);
        LOGGER.info("hdfsConfig: {} ", JSON.toJSONString(hdfsConfig));
        if (Objects.isNull(hdfsConfig)) {
            LOGGER.error("HdfsConfig is null");
            throw new CommonServiceException(AIModelError.HDFS_EXCEPTION);
        }

        // 设置配置
        Configuration conf = new Configuration();
        LOGGER.info("conf: {} ", JSON.toJSONString(conf));
        UserGroupInformation.setConfiguration(conf);

        // 初始化文件系统连接
        try {
            UserGroupInformation.loginUserFromKeytab(hdfsConfig.getOssuser(), hdfsConfig.getOssuserKeytab());
            fs = FileSystem.get(conf);
        } catch (Exception exp) {
            LOGGER.error("Init HDFS Connection failure!");
            throw new CommonServiceException(AIModelError.HDFS_EXCEPTION, exp);
        }
        LOGGER.info("Init HDFS Connection Success!");
    }

    /**
     * Gets hadoop fs.
     *
     * @return the hadoop fs
     */
    public FileSystem getHadoopFs() {
        return fs;
    }
}

使用

    public boolean upload(String localFile, String hdfsPath) {
        try {
            mkParentDir(hdfsPath);
            FileSystem fs = HdfsConnection.getInstance(installScenarios).getHadoopFs();
            fs.copyFromLocalFile(new Path(localFile), new Path(hdfsPath));
            LOGGER.info("upload file success!");
            return true;
        } catch (Exception exp) {
            LOGGER.error("upload file failure!");
            throw new CommonServiceException(AIModelError.HDFS_EXCEPTION, exp);
        }
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/894080.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS开发(State模型)

一、State模型概述 FA(Feature Ability)模型:从API 7开始支持的模型,已经不再主推。 Stage模型:从API 9开始新增的模型,是目前主推且会长期演进的模型。在该模型中,由于提供了AbilityStage、Wi…

【MR开发】在Pico设备上接入MRTK3(二)——在Unity中配置Pico SDK

上一篇文档介绍了 【MR开发】在Pico设备上接入MRTK3(一)在Unity中导入MRTK3依赖 下面将介绍在Unity中导入Pcio SDK的具体步骤 在Unity中导入Pico SDK 当前Pico SDK版本 Unity交互SDK git仓库: https://github.com/Pico-Developer/PICO-Un…

基于SpringBoot+Vue+uniapp微信小程序的垃圾分类系统的详细设计和实现(源码+lw+部署文档+讲解等)

详细视频演示请联系我获取更详细的演示视频 项目运行截图 技术框架 后端采用SpringBoot框架 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的开源框架。它采用约定大于配置的理念,提供了一套默认的配置,让开发者可以更专注于业务逻辑而不…

面试题:Redis(七)

1. 面试题 2. 缓存预热 当Redis暂时没有数据,但MySQL中有数据时,由程序员、中间件、写段程序提前访问该数据,使得数据进行回写进Redis,从而达到缓存预热的效果,这样可以使得一开始访问页面程序的用户也没有卡顿&#x…

机器学习核心:监督学习与无监督学习

个人主页:chian-ocean 文章专栏 监督学习与无监督学习:深度解析 机器学习是现代人工智能的核心支柱,已广泛应用于从数据挖掘到计算机视觉再到自然语言处理的诸多领域。作为机器学习最主要的两大类型,监督学习(Super…

自定义注解和组件扫描在Spring Boot中动态注册Bean(一)

​ 博客主页: 南来_北往 系列专栏:Spring Boot实战 在Spring Boot中,自定义注解和组件扫描是两种强大的机制,它们允许开发者以声明性的方式动态注册Bean。这种方式不仅提高了代码的可读性和可维护性,还使得Spring Boot应用的…

【Windows】Devops jenkins pipeline调用powershell脚本 New-PSSession报错 连接到远程服务器 失败 拒绝访问

错误 powershell.exe : New-PSSession : [192.168.1.1] 连接到远程服务器 192.168.1.1 失败,并显示以下错误消息: 拒绝访问 原因 Windows 平台默认安装的jenkins启动用用户是SYSTEM 创建一个用户(如: yeqiang)隶属于Administra…

嵌入式职业规划

嵌入式职业规划 在嵌入式的软件开发中,可以分为: 嵌入式MCU软件开发工程师; 嵌入式Linux底层(BSP)软件开发工程师; 嵌入式Linux应用开发工程师; 嵌入式FPGA算法开发工程师 对于前两个阶段 …

FastGPT本地开发 之 通过Navicat管理MongoDB、PostgreSQL数据库

1. 背景 前期已经完成FastGPT的本地化部署工作,通过Docker启动FastGPT的相关容器即可运行。(共6个容器) 2.本地化开发 2.1 前置依赖 2.2 源码拉取 git clone gitgithub.com:labring/FastGPT.git2.3 数据库管理 本地化运行的FastGPT使用…

实践甘肃数据挖掘挑战赛作物与杂草的智能识别,基于YOLOv7全系列【tiny/l/x】参数模型开发构建田间低头作物杂草智能化检测识别模型

一、背景 田间杂草的有效管理是现代农业生产中面临的重要挑战之一。杂草不仅竞争作物的养分、 水分和阳光,还可能成为害虫和病原体的寄主,从而降低农作物的产量和品质。因此,开发 高效、精确的杂草检测和管理系统对于提高农业生产效率、降低化…

闺蜜机为什么会火?

闺蜜机作为一种集娱乐、学习、健身等多功能于一体的家居设备,近年来逐渐受到消费者的青睐。以下是对闺蜜机的详细介绍: 一、定义与特点 定义:闺蜜机是一种屏幕尺寸介于18~32英寸之间、可触屏、自带支架且支持多个角度调节、底部自带滑轮可移…

ROS理论与实践学习笔记——6 ROS机器人导航(仿真)

在 ROS 中,机器人导航(Navigation)是由多个功能包组合而成的系统,统称为导航功能包集(navigation stack)。它提供了一个全面的框架,使得移动机器人能够自主导航到指定目标点,同时避开…

分析调优、性能测试曲线图

目录 一、分析调优 性能测试分析的关键指标 分析步骤 收集数据: 找到瓶颈: 性能调优策略 调优硬件资源: 数据库调优: 持续监控和改进 二、性能测试曲线图 1. 轻负载阶段(Light Load) 2. 重负载…

非淘系阿里231滑块 分析

声明: 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 有相关问题请第一时间头像私信联系我删…

Leetcode—1188. 设计有限阻塞队列【中等】(多线程)

2024每日刷题(183) Leetcode—1188. 设计有限阻塞队列 C实现代码 class BoundedBlockingQueue { public:BoundedBlockingQueue(int capacity) {sem_init(&enSem, 0, capacity);sem_init(&deSem, 0, 0);}~BoundedBlockingQueue() {sem_destroy(…

WordPress 禁用上传媒体图片自动生成缩略图及多尺寸图片教程

一、在 设置-媒体-媒体设置 中几个尺寸大小的设置不勾选或设置为 0&#xff0c;如下图&#xff1a; 二、找到主题文件 function.php 文件&#xff0c;打开后&#xff0c;在 <?php 后面添加如下代码&#xff1a; function.php 文件路径一般为&#xff1a;WordPress网站根目录…

Nginx - 实现 TCP/DUP流量的按 IP 动态转发

文章目录 需求背景需求目标&#xff1a;使用场景&#xff1a;成功标准&#xff1a;技术要求&#xff1a; Ng配置测试验证 需求 Nginx Stream TCP 协议按 IP 转发 背景 为了优化网络性能和提升服务的可用性&#xff0c;我们需要在 Nginx 中配置 stream 模块&#xff0c;使其根…

力扣题解(鸡蛋掉落)

887. 鸡蛋掉落 已解答 困难 相关标签 相关企业 给你 k 枚相同的鸡蛋&#xff0c;并可以使用一栋从第 1 层到第 n 层共有 n 层楼的建筑。 已知存在楼层 f &#xff0c;满足 0 < f < n &#xff0c;任何从 高于 f 的楼层落下的鸡蛋都会碎&#xff0c;从 f 楼层或比它…

字节 HLLM 论文阅读

github连接&#xff1a;https://github.com/bytedance/HLLM 探讨问题&#xff1a; 推荐LLM的三个关键问题&#xff1a; LLM预训练权重通常被认为是对世界知识的概括&#xff0c;其对于推荐系统的价值&#xff1f;对推荐任务进行微调的必要性&#xff1f;LLM是否可以在推荐系统…

如何分离人声和背景音乐?精准音频分离,提升你的作品质量

在音频编辑和处理的领域中&#xff0c;分离人声和背景音乐是一项颇具挑战的任务&#xff0c;但也是众多音频爱好者和专业人士经常面临的需求。无论是为了制作卡拉OK伴奏、提升视频制作质量&#xff0c;还是进行音乐分析和研究&#xff0c;掌握人声与背景音乐的分离技术都显得至…