利用可解释性技术增强制造质量预测模型

概述

论文地址:https://arxiv.org/abs/2403.18731
本研究提出了一种利用可解释性技术提高机器学习(ML)模型性能的方法。该方法已用于铣削质量预测,这一过程首先训练 ML 模型,然后使用可解释性技术识别不需要的特征并去除它们,以提高准确性。这种方法有望降低制造成本,提高对 ML 模型的理解。这项研究表明,可解释性技术可用于优化和解释制造业的预测模型。

介绍

铣削是一种加工工艺,通过去除材料来加工出所需的形状或表面光洁度。在这一过程中,被称为铣刀的切削工具高速旋转,在移动工件的同时去除材料。工件固定在一个可以多轴移动的工作台上,可以进行各种方向和角度的加工(Fertig 等人,2022 年)。铣削过程中的能耗会因设置和材料的不同而有很大差异,但通常被认为是一种能源密集型工艺。如果能预测和预防质量问题,就能降低能耗,减少因生产缺陷零件而造成的浪费(Pawar 等人,2021 年)。

机器学习(ML)模型可以识别数据中的模式和结构,并在不受程序直接指导的情况下进行预测。这些模型是预测铣削操作最终质量的有用工具,可以提高制造过程的效率和可靠性(Mundada 和 Narala,2018 年)。然而,铣削操作的实验数据非常昂贵,因此可用数据往往很少,难以训练 ML 模型来预测工件质量(Postel 等人,2020 年)。

此外,在使用复杂的 ML 模型(尤其是深度神经网络模型)时,其内部运作是不透明的,其 "黑箱 "性质可能会造成问题。出现这一问题的原因是这些模型的预测结果难以理解,因此无法被制粉质量预测领域的从业人员和利益相关者完全理解(Kwon 等人,2023 年)。

本研究提出了一种利用可解释性方法来阐明和优化 ML 模型预测机制,从而提高 ML 模型性能的方法。通过使用可解释性方法,可以识别 ML 模型预测中的重要特征并消除不必要的特征,从而有效推进优化工作(Bento 等人,2021 年;Sun 等人,2022 年)。

相关研究

将机器学习(ML)应用于制造和加工任务至少已有十年之久(Kummar,2017)。例如,ML 最初用于优化车削操作(Mokhtari Homami 等人,2014 年)、预测铣削操作的稳定条件(Postel 等人,2020 年)、估算内孔质量(Schorr 等人,2020 年)以及使用 ML 驱动的表面质量控制对缺陷进行分类(Chouhad 等人,2021 年)。Chouhad 等人,2021 年)等。

然而,可解释人工智能(XAI)方法在制造过程中的应用最近才开始受到关注(Yoo 和 Kang,2021 年;Senoner 等人,2022 年)。正在进行的欧洲 XMANAI 项目(Lampathaki 等人,2021 年)旨在评估 XAI 在不同制造领域的能力。特别是,XAI 在故障诊断领域的成功应用潜力已经显现(Brusa 等人,2023 年)。

还有一些研究侧重于数据集的特征选择,而不直接考虑 ML 模型(Bins 和 Draper,2001 年;Oreski 等人,2017 年;Venkatesh 和 Anuradha,2019 年)。本研究探讨了使用 XAI 通过消除不必要的传感器来提高预测模型质量的可能性,尽管通过可解释性方法来提高 ML 模型性能的方法在可解释性 ML 的背景下是众所周知的(Bento 等人,2021 年;Sun 等人,2022 年;Nguy 等人,2022 年)。等人,2022 年;Nguyen 和 Sakama,2021 年;Sofianidis 等人,2021 年),但这是 XAI 首次用于铣削操作的质量预测模型。特别是,通过使用 XAI 方法识别和消除不需要的特征来改进铣削过程质量预测模型的方法非常新颖。

方法论

本研究提出了一种利用可解释性技术提高机器学习(ML)模型性能的方法,具体步骤如下。

1. 训练 ML 模型

首先,使用给定的数据集训练 ML 模型。本研究使用了三种模型:决策树回归、梯度提升回归和随机森林回归。与神经网络相比,这些模型需要的数据更少,也更容易解释。

2. 可解释性方法的应用

将可解释性方法应用于训练好的 ML 模型和数据集,以确定对预测准确性至关重要的特征。这一步骤包括对特征的重要性进行排序,并使用越来越多的重要特征来训练新模型。

3. 特征选择

根据特征的重要性,只使用最重要的特征来训练新模型。这一过程可提高 ML 模型的性能。

机器学习模型

  • 决策树回归模型

决策树回归模型将输入空间划分为不同的区域,并对每个区域内的训练样本拟合一个简单的模型(通常为常数)。 对新输入𝑥 x 的预测 𝑦^表示如下。

其中,𝑐𝑚cm 是拟合区域 𝑅𝑚R m的常数,𝑀 M 是区域数量,𝐼 ⋅I⋅ 是指标函数。

  • 梯度提升回归模型

梯度提升回归模型结合了多个弱模型来优化损失函数。从初始近似值F0(x)开始,通过添加弱模型hmx(x)对其进行如下更新。

其中,𝛼 α 是学习率,hm(x) 是弱学习器,用于纠正前一个模型中的错误。

𝐹𝑚(𝑥)=𝐹𝑚-1(𝑥)+𝛼⋅타𝑚(𝑥)

  • 随机森林回归模型

随机森林回归模型通过训练多棵决策树并取其平均值来做出最终预测。

新输入数据𝑥x � �最终预测结果表达如下

其中,𝑇 T 是树的总数,yt(x)𝑦𝑡(𝑥) 是第 t 棵树的预测值。

𝑦^(𝑥)=1𝑇∑𝑡=1𝑇𝑦𝑡(𝑥)

可解释性技术

  • 特征的排列重要性

特征置换重要性是一种评估模型重要特征的问责方法。它通过随机替换某些特征并监测模型性能的变化来衡量每个特征的重要性。

  • 夏普利值

夏普利值源于合作博弈论,根据每个参与者的边际贡献分配公平值。在机器学习模型中,它量化了每个特征对预测的贡献。

案例研究

本研究使用 ENSAM 生成的数据集来应用所提出的方法。详情如下。

目标

本案例研究的目的是为每个质量指标开发一个预测模型。这不仅包括训练模型,还包括明确预测结果的原因,以及识别和删除不需要的特征。这一步骤旨在通过减少冗余传感器、优化资源和降低成本,最大限度地降低安装和维护成本。

图 1:用于加工工件的铣床

数据预处理

由于本研究处理的是时间序列长度不固定的数据,因此对每个时间序列都计算了方框图值。此外,数据集中的元数据包含各种实验参数。

训练机器学习模型

在本研究中,对决策树回归、梯度提升回归和随机森林模型进行了训练,以预测每个质量指标。模型输入和输出的整体视图如图 2 所示。每个模型的训练都采用了五部分交叉验证法。这种方法将数据分成五个相等的部分,其中四个部分(80%)用于训练,其余一个部分(20%)用于每次迭代测试。这一过程重复五次,五部分中的每一部分都作为测试集。对模型的性能取五次迭代的平均值,以得出更可靠的评估结果。

图 2:ML 预测模型接收箱形图(时域和频域)和机器配置参数,并输出质量指标。

分析

对所提出的方法进行了分析。首先评估了 ML 模型的性能,然后分析了 ML 模型的预测机制,最后评估了去除特征对 ML 模型性能的影响。

评估模型的预测质量

本研究旨在评估梯度提升回归、决策树和随机森林这三种 ML 模型的预测准确性。评估预测质量的主要指标是平均绝对误差率(MAPE)。如果 MAPE 小于 5%,则认为预测质量较高。

  • 设置:使用 100 个样本的预处理数据集。

  • 运行:在预处理数据集上训练了梯度提升回归、决策树和随机森林三种不同的机器学习模型,并使用 k 分割交叉验证法测量了 MAPE。

  • 研究结果:利用这些 ML 技术,我们能够利用一套完整的质量特征对 Rdq 进行预测,误差率低于 5%。具体来说,梯度提升回归模型的误差率为 4.58%,随机森林模型的误差率为 4.88%。

了解 ML 模型的预测机制

研究评估了每个属性在预测质量指标方面的重要性。

  • 设置:侧重于梯度提升回归模型,这些模型在训练后表现出最佳性能。
  • 运行:应用特征的排列重要性和 Shapley 值。
  • 发现:我们发现不同的解释方法显示出不同的原因。例如,与夏普利值相比,排列特征重要性突出显示 fa_ts_max 是更重要的特征(见图 3)。

图 3:使用 FPI(特征排列重要性排列)和 SHAP(夏普利值)方法对 Rdqmaxmean 预测的特征重要性等级进行可视化展示。

提高性能

本实验探索了将可解释性方法整合到 ML 模型开发过程中以提高模型性能的可能性。

  • 设置:ML 模型中的变量根据特征的重要性从高到低进行分类,每次试验都要训练一个新的模型,并改变顶级特征的比例(p)。

  • 运行:尝试只使用重要特征来提高模型的性能。

  • 研究结果:通过将最重要的特征整合到训练数据集中,ML 模型的性能得到了提高。例如,只选择排列重要性最高的 20% 的最重要特征,MAPE 就从约 4.58 提高到了 4.4。

图 4:在 Rdq 预测中根据不同方法使用不同比例的最重要特征。

讨论

本案例研究展示了可解释机器学习(ML)方法对制造质量预测模型的益处。可解释性分数(如特征重要性)用于解释每个特征与模型预测能力的相关性。人类专家可以利用这种解释来分析训练有素的模型,并验证重要性高的特征是否对预测任务有意义。

ML 模型可以揭示输入特征与预测目标之间的新关系,但在质量预测环境中,由于缺乏数据,过度依赖某些特征可能会成为学习错误相关性的指标。可解释性方法可以作为模型验证和人工检查的工具。

此外,研究还表明,可以通过去除低级特征来改进模型。具体来说,如图 4 所示,只保留最重要的特征就能提高模型的准确性。这种方法不仅提高了预测的准确性,还减少了预测所需的传感器数量,从而降低了预测的计算成本。在生产过程中进行实时质量预测以检测潜在缺陷和偏离计划的情况时,重要的是要尽量减少预测所需的时间并提高预测频率。

在设计生产原型机时,同样重要的是在早期阶段对预测模型进行评估,以确定机器的最终传感器组。虽然原型机配备了许多传感器,但只有在对预测模型进行评估后,才会选择相关的传感器。

此外,使用简单且可解释的模型(Breiman,2001 年;Rudin 等人,2022 年)可能有利于制造业质量预测模型的开发。然而,简单性和准确性之间存在权衡(奥卡姆困境):模型越简单,准确性就越低。在案例研究中,简单决策树与更复杂的梯度提升树和随机森林之间的误差差异也体现了这种权衡。使用可解释性技术减少特征数量再次降低了模型的复杂性,并使最终模型更具可解释性。

总结

本研究展示了结合机器学习(ML)和可解释性技术来提高制造业表面质量预测模型性能的潜力。尽管可用数据有限,但基于可解释性技术的特征选择能够利用少量数据提高 ML 模型的有效性。

未来研究的目标是将可解释性方法扩展到铣削以外的制造工艺,并建立一个更全面的预测系统。此外,这些 ML 模型将被用作物理机器的数字孪生模型,并将应用参数优化方法来开发新的开发成果。这种整合不仅能提高模型的准确性,还能对机器操作进行实时微调,从而提高效率并降低成本。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/890874.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Lucene 倒排索引

倒排索引是什么? 【定义】倒排索引(Inverted Index)是一种用于信息检索的数据结构,尤其适用于文本搜索。它与传统索引的主要区别在于,传统索引是根据文档来查找词语的位置,而倒排索引则是根据词语来查找文…

vmware虚拟机 报错:客户机操作系统已禁用 CPU,请关闭或重置虚拟机 的解决方法

打开cpu虚拟化全部进行勾选 ctrl e 进行关机 勾选上打开就好了 如果没有那个选项 关机>打开虚拟机>管理>更改硬件兼容性> 往小处改改> >更改此虚拟机

MySQL连接查询:联合查询

先看我的表结构 emp表 联合查询的关键字(union all, union) 联合查询 基本语法 select 字段列表 表A union all select 字段列表 表B 例子:将薪资低于5000的员工, 和 年龄大于50 岁的员工全部查询出来 第一种 select * fr…

x-file-storage:一款强大的文件聚合存储解决方案

嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和高效工作学习方法 dromara/x-file-storage 是一个由 Dromara 社区开发和维护的开源项目,旨在提供一个高效、可靠的文件存储解决方案。该项目以其强大的功能和…

正则表达式-“三剑客”(grep、sed、awk)

1.3正则表达式 正则表达式描述了一种字符串匹配的模式,可以用来检查一个串是否含有某种子串,将匹配的子串替换或者从某个串中取出符号某个条件的子串等,在linux中代表自定义的模式模版,linux工具可以用正则表达式过滤文本。Linux…

新版 Notepad++ 下载与安装教程

一、软件准备:麻烦点我 二、双击下载好的 notepad 软件进行安装,选择 “简体中文”。 三、默认 “下一步” 安装。 四、单击 “我接受” 按钮。 五、自定义安装位置,个人建议安装在 D 盘。 六、选择组件,默认 “下一步”。 七、勾…

通过OpenCV实现 Lucas-Kanade 算法

目录 简介 Lucas-Kanade 光流算法 实现步骤 1. 导入所需库 2. 视频捕捉与初始化 3. 设置特征点参数 4. 创建掩模 5. 光流估计循环 6. 释放资源 结论 简介 在计算机视觉领域,光流估计是一种追踪物体运动的技术。它通过比较连续帧之间的像素强度变化来估计图…

C++:list(用法篇+模拟实现)

文章目录 前言一、list 的用法1. list 简介2. 用法代码演示1)头/尾 插/删和迭代器遍历2)insert与erase3)排序sort相关4)其他相关 二、list模拟实现1. 结点类模板list_node2. 定义迭代器1)为什么要专门封装一个迭代器&a…

使用可白嫖的高配置服务器——DAMODEL进行AI开发教程

DAMODEL:DAMODEL 目前DAmodel注册并实名赠送50大洋的免费额度,搭载4090的服务器费用不到2r/h 教程: 完成注册并实名后 在此点击创建实例 选择实例配置 选择镜像,看你使用哪种dl框架 。 实例自带的磁盘会随实例释放。需要自己…

FineReport 图表切换维度

1、导入数据 可以参考导入Excel数据,直接导入数据也可以在数据库建表,Navicat直接导入数据 以下是数据库建表操作 -- 创建表 create table test11 ( orderTime date NULL, -- 下单时间 quantity int NULL -- 数量 ); 导入数据 2、SQL判断统计维度…

Docker 的数据管理

前置资源 Docker的数据管理资源.zip资源-CSDN文库 一、容器中数据管理 管理 Docker 容器中数据主要有两种方式:数据卷(Data Volumes)和数据卷容器(DataVolumes Containers)。 1.数据卷 数据卷是一个供容…

2024 年 Mac 下这些生产力工具,好用到哭

每段关系最终都会结束 即使不是因为别的原因 也会因为死亡 我只知道 你不对她说出来 她就永远不知道 你的心意 她那天离开的时候 才知道一个道理 有时候 保护一样重要的东西的方式 不是守在她旁边 而是离开她 离得远远的远到看起来谁也 不在乎谁一样 今天呢&#x…

Go-知识泛型

Go-知识泛型 1. 认识泛型1.1 不使用泛型1.2 使用泛型 2. 泛型的特点2.1 函数泛化2.2 类型泛化 3. 类型约束3.1 类型集合3.2 interface 类型集合3.2.1 内置interface类型集合3.2.2 自定义interface类型集合3.2.2.1 任意类型元素3.2.2.2 近似类型元素3.2.2.3 联合类型元素 3.2.3 …

Linux网络命令:用于配置防火墙规则的一个用户友好的工具ufw详解

目录 一、概述 二、安装 UFW 三、启动、重启和关闭 UFW 1、启动 2、关闭UFW 3、 重启 UFW 四、查看 UFW 状态 五、UFW 基本命令 1. 允许端口 (1)单个 TCP 端口 (2)允许单个 UDP 端口 (3&#xff0…

音频响度归一化 - python 实现

在处理音频样本时,往往我们的音频样本由于录制设备,环境,人发音的音量大小的不同影响,会造成音频响度不统一,分布在一个不同的响度值域上。为了让语音模型更好的学习音频特征,就有必要对音频的响度进行归一…

【AIGC】ChatGPT是如何思考的:探索CoT思维链技术的奥秘

博客主页: [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 💯前言💯什么是CoT思维链CoT思维链的背景与技术发展需求 💯CoT思维链的工作原理💯CoT思维链的应用领域💯CoT思维链的优势💯CoT思维…

ppt压缩文件怎么压缩?压缩PPT文件的多种压缩方法

ppt压缩文件怎么压缩?当文件体积过大时,分享和传输就会变得困难。许多电子邮件服务对附件的大小有限制,而在网络环境不佳时,上传和下载大文件可能耗时较长。此外,在不同设备上播放时,较大的PPT文件还可能导…

基于Java+SpringBoot+Uniapp的博客系统设计与实现

项目运行截图 技术框架 后端采用SpringBoot框架 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的开源框架。它采用约定大于配置的理念,提供了一套默认的配置,让开发者可以更专注于业务逻辑而不是配置文件。Spring Boot 通过自动化配置和约…

<OS 有关> Windows 11 对不习惯菜单所做修改 自用

新安装 Windows 11 23H2 不习惯菜单,做的修改: 1. 禁用 Show More Options 鼠标右键 想使用旧版的 鼠标右键菜单, 不需要点 show more options , 如下图的方式: 创建一个 注册表文件: disable_content.reg Windows …

Maven 高级之分模块设计与继承、聚合

在软件开发中,随着项目规模的扩大,代码量和复杂度不断增加,传统的一体化开发模式逐渐暴露出诸多问题。为了解决这些问题,模块化开发应运而生,而 Maven 正是模块化开发的利器,它提供的继承和聚合机制为构建和…