<Project-8 pdf2tx-MM> Python Flask应用:在浏览器中翻译PDF文件 NLTK OCR 多线程 指定翻译器 改进后的P6

项目概述

名字解释 缩写: pdf2tx-MM

pdf file transfer to text content with Multi-threads and Multi-translators

pdf2tx-MM 是一个基于 Flask 的 Web 应用程序,提供将 PDF 文件中的内容提取、翻译并展示。使用者上传 PDF 文件,应用程序将对其进行 OCR 识别,提取文本内容,并使用指定的翻译引擎(如 Google 、Microsoft 翻译)将文本翻译成目标语言(中文简体,与繁体)。处理完成后,用户可以查看原文和译文的对比。

Added on 9oct.24 7pm.  这个项目的的代码有小改动如下:
 

升级 (P8.1)
8oct.24
使用jieba,可以对中文进行自然语言识别
对日文翻译,使用janome库,对日文使用自然语言分割,提高翻译准确
程序可以识别PDF是文本(langdetect),还是图片,图片才调用OCR
翻译过程并行化(ThreadPoolExecutor)
翻译结果加入 传统中文
可以下载翻译的文本
放弃ZhipuAI做为翻译机,因为在测试时,总是出发敏感词检测。
进度算法改为:考虑页数
————————————————

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/davenian/article/details/142797522

所有代码、有关的Docker安装文件,在下面的文章链接中保存,QNAP Container APP上部署是成功的。

原文链接:Project-8.1 pdf2tx-MM https://blog.csdn.net/davenian/article/details/142797522

原因

P6项目: pdf2tx 运行时间太久,工作在单线程,对大PDF文件会造成运行Container的NAS宕机。所以,对P6: <Project-6 pdf2tx> Python Flask 应用:图片PDF图书的中文翻译解决方案
使用P7 ipdf2tx 代码提速:<Project-7 ipdf2tx> Python flask应用 在浏览器中提交 PDF图片 转换 文本PDF,同时保留图像 多进程 OCR 详细的安装准备环境
 

目的

缩短执行时间与对系统的占用:
用多任务方法来提升OCR速度
用提供语言范围,使OCR提高识别效率
注册了Azure的账号,建立了一个翻译资源(Pricing Tier free, Limit 5M/月),实现可以翻译机功能
提高翻译质量:
利用NLTK库,对语言进行分割
使用Azure资源(比GoogleTranslator 快了35秒,遇到输出有排版问题...)

功能简介

  • PDF 文件上传:用户可以通过网页上传需要处理的 PDF 文件。
  • OCR 识别:应用程序使用 Tesseract OCR 将 PDF 文件中的内容转换为可编辑的文本。
  • 多语言支持:支持多种 OCR 语言,如英文、简体中文、繁体中文等。
  • 文本翻译:集成了多个翻译引擎(如 Google 翻译、Microsoft 翻译),用户可以选择翻译引擎,将提取的文本翻译成目标语言。
  • 进度跟踪:在处理过程中,实时显示处理进度,提供友好的用户体验。
  • 结果展示:处理完成后,用户可以在网页上查看原文和译文的对比,方便浏览和校对。
  • Docker 部署:提供了 Dockerfile,方便应用程序的容器化部署。

 操作与功能展示

注:使用 Windows 11 录屏,用 Acdsee Video Stuido 转为Gif 文件 (用DOS 时,中关村的 CD 带有 acdsee.exe 用来看日本写真,某年的黑五买了这软件包,就一直停留在那一年的版本里,升级要花钱的)

代码结构

目录结构

pdf2tx-MM/
├── app.py
├── config.ini
├── requirements.txt
├── Dockerfile
├── templates/
│   ├── upload.html
│   ├── processing.html
│   └── result.html
└── uploads/  # 用于存储上传的文件

程序的逻辑

多进程方式把PDF转为图像
         -> OCR提取图片中的文字
                ->NLTK 分割段落
                        -> 文字交给翻译器
                                  -> 翻译的结果在网页上显示

同P6, 可能PDF内容未授权,上传代码没有保存内容的功能。

主要组件

1. app.py

应用的主程序,包含了所有的后端逻辑。主要功能有:

  • Flask 应用的初始化和配置
  • 路由定义:处理文件上传、进度跟踪、结果展示等路由。
  • 后台处理函数:包括文件的 OCR 处理和文本翻译。
  • 辅助函数:如文件类型检查、OCR 处理、文本翻译等。

2. 模板文件

  • templates/upload.html:文件上传,提供选择文件、选择翻译引擎和 OCR 语言的选择。
  • templates/processing.html:文件处理的进度页面,实时显示处理进度。
  • templates/result.html:结果页面,会有处理时间、使用的翻译引擎、OCR 语言,以及原文和译文的对比。

3. config.ini

用于存储敏感的配置信息,如 API 密钥和区域信息。格式如下:

[translator]
azure_api_key = YOUR_AZURE_API_KEY
azure_region = YOUR_AZURE_REGION

可能会涉及敏感信息,在用GIT时,应该在config.ini目录下,创建一个 .gitignore (文件第一个字符是“点” dot point . )

文件内容是config.ini , 你不想因Git版本控制,上传的文件。

.gitignore 的使用场景:

  • 忽略敏感信息:如密码、API 密钥、配置文件等不应暴露在公共代码库中的文件。
  • 忽略临时文件:开发过程中产生的临时文件或日志文件。
  • 忽略编译生成文件:如 .exe.o 等编译生成的文件,这些文件不需要放入版本库,且通常是机器特定的。

4. Dockerfile

应用程序的容器化部署: 基础镜像、依赖项安装、环境变量设置等。

关键功能的实现

1. 文件上传与处理

# 允许的文件类型检查函数
def allowed_file(filename):

@app.route('/', methods=['GET', 'POST'])
def upload_file():

功能:

  • 接收用户上传的 PDF 文件。
  • 检查文件类型和有效性。
  • 保存上传的文件到指定目录。
  • 获取用户选择的翻译引擎和 OCR 语言。
  • 生成唯一的任务 ID,启动后台处理线程。
  • 重定向到处理进度页面。

2. OCR 识别

def ocr_image(image, lang='eng'):

功能:

  • 使用 Tesseract OCR 对图像进行文字识别。
  • 支持多种语言,用户可以选择 OCR 语言。

3. 文本翻译

def translate_text(text, engine, progress_callback=None, text_lang='eng')

功能:

  • 将提取的文本进行分句处理,以适应翻译引擎的字符限制。
  • 支持多种翻译引擎,用户可以选择使用的翻译引擎。
  • 根据 OCR 语言,映射到翻译引擎支持的源语言代码。
  • 使用线程池并行翻译,提高翻译速度。
  • 提供进度回调函数,实时更新处理进度。
  • 实现了重试机制和缓存机制,增强了稳定性和性能。

4. 进度跟踪与显示

功能:

  • 使用全局字典 progressprogress_lock 记录各个任务的处理进度。
  • 在处理过程中,定期更新进度信息。
  • 前端页面通过 SSE(Server-Sent Events)与后端通信,实时获取进度更新。

5. 结果展示

@app.route('/result/<task_id>')

功能:

  • 从全局字典 results 中获取指定任务的处理结果。
  • 格式化处理时间为 HH:MM:SS 格式。
  • 将原文、译文、处理时间、使用的翻译引擎和 OCR 语言传递给模板。

安装与配置

环境准备

OSPythonPython必要库库组件
Windows 11 23H23.12.3NLTKpunkt, popular, punkt_tab
QNAP Container

unstructured

#NLTK需要

pytesseract

tesseract-ocr-chi-sim

pdf2image

werkzeug

#库都为最新版

deep_translator

Flask

安装 python:3.12.3-slim


安装必要的库和工具:

  • Flask(Web 框架)
  • pytesseract(OCR 库)
  • pdf2image(将 PDF 页面转换为图像)
  • NLTK(自然语言分割,为翻译整句提升质量)
  • deep_translator(翻译机)
  • tesseract-ocr(需要系统安装,还有训练后的语言DATA,参考P7文章)
  • unstructured (非结构化 数据处理 nltk调用)
  • 先在Windows 11上实现,再实现Linux Docker,以下是在Windows 11上的操作。 Linux 如果有字体、字库问题,在P1里有提及安装 pytz 

因为重复,以下纯引用P7文章内容

<Project-7 ipdf2tx> Python flask应用 在浏览器中提交 PDF图片 转换 文本PDF,同时保留图像 多进程 OCR 详细的安装准备环境-CSDN博客

pytesseract(OCR 库)

项目:https://github.com/UB-Mannheim/tesseract/wiki  
Windows 11有安装包下载(我写这篇时的最新版本):https://github.com/UB-Mannheim/tesseract/releases/download/v5.4.0.20240606/tesseract-ocr-w64-setup-5.4.0.20240606.exe

如果想得到更准确识别,还有训练过的语言包下载:GitHub - tesseract-ocr/tessdata: Trained models with fast variant of the "best" LSTM models + legacy models

我下载了简体中文包:chi_sim.traineddata,这个比安装文件自带的大多了41MB,我又下载了english 包。

下载后,文件放到:C:\Program Files\Tesseract-OCR\tessdata   
                               (如果你安装它在上面目录)

Linux可以用sudo来安装,如:

sudo apt-get update
sudo apt-get install tesseract-ocr
sudo apt-get install tesseract-ocr-chi-sim

添加路径

NLTK 库

参考:https://www.nltk.org/install.html#

安装NLTK后,还要安装 NLTK数据, P8主要用 punkt 

python -m nltk.downloader punkt

我曾以为安装了NLTK后,就有punkt. 但运行时报错:

"INFO:werkzeug:127.0.0.1 - - [07/Oct/2024 18:18:17] "GET /progress/4235df2a-faf3-4b28-a45d-bd94a53fa91b HTTP/1.1" 200 -
ERROR:root:处理失败:
**********************************************************************
  Resource punkt_tab not found.
  Please use the NLTK Downloader to obtain the resource:

  >>> import nltk
  >>> nltk.download('punkt_tab')

  For more information see: https://www.nltk.org/data.html

  Attempted to load tokenizers/punkt_tab/english/

  Searched in:

还学着在code中,加入确保下载:

import nltk
nltk.download('punkt', quiet=True)

还是报类似错误 (报错信息没有存,印象里是)

在网上看了很多篇,以至于总结出:这帮骗子们。直到看到了GitHut上一个讨论:NLTK Error in partition_pdf(): Resource "punkt_tab" not found #3511 

CS50AI Parser - Check50 "nltk.download('punkt_tab')" ERROR

在看完他们的讨论后,我查了我的 Windows 11 上没有 unstructured 库,因为 punkt 调用找不到它,安装unstructured ,还安装了NLTK punkt_tab 数据包, 觉得后者是解决问题的关键。 参数all都放里面打包安装了。

问题解决。

想了解它的,看: unstructured · PyPI

其它没遇到问题,略过...

完整代码

复制代码,环境相同,软件就可以正常工作。这里涉及key,在config.ini文件中填入自己密匙

pdf2tx-MM/
├── app.py
├── config.ini
├── requirements.txt
├── Dockerfile
├── templates/
│   ├── upload.html
│   ├── processing.html
│   └── result.html
└── uploads/  # 用于存储上传的文件

1. app.py

import os
import uuid
import logging
import configparser
from flask import Flask, render_template, request, redirect, url_for, Response
from threading import Thread, Lock
from werkzeug.utils import secure_filename
from pdf2image import convert_from_path
import pytesseract
from deep_translator import GoogleTranslator, MicrosoftTranslator, YandexTranslator
from concurrent.futures import ThreadPoolExecutor
from collections import defaultdict
import time # 导入 time 模块, 显示处理时间用
from datetime import timedelta #在结果页面显示处理时间,格式为 HH:MM
import nltk
#nltk.download('punkt', quiet=True) # 已经安装,用:python -m nltk.downloader popular  
# !!!安装NLTK后,还要安装NLTK DATA:python -m nltk.downloader popular 这个示例没有包含 punkt, 需要指定安装。 
# 但运行还会报错! 还需要安装 unstructured 库,Y TMD在介绍里没说 f!
from functools import lru_cache


# 初始化 Flask 应用
app = Flask(__name__)
app.config['ALLOWED_EXTENSIONS'] = {'pdf'}
app.config['UPLOAD_FOLDER'] = 'uploads'
app.config['MAX_CONTENT_LENGTH'] = 50 * 1024 * 1024  # 50MB

# 确保上传文件夹存在
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)

# 全局变量
progress = defaultdict(int)
results = {}
progress_lock = Lock()

# 设置日志 格式
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')


# 读取配置文件
config = configparser.ConfigParser()
config_file = 'config.ini'

if not os.path.exists(config_file):
    raise FileNotFoundError(f"配置文件 {config_file} 未找到,请确保其存在并包含必要的配置。")

config.read(config_file)

try:
    AZURE_API_KEY = config.get('translator', 'azure_api_key') # Microsoft Azure 需要KEY, 它给了2个,可以循环使用。用一个就行。
    AZURE_REGION = config.get('translator','azure_region') # 还需要 copied: This is the location (or region) of your resource. You may need to use this field when making calls to this API.
    # 如果有其他 API 密钥,例如 Yandex,可以在此添加
    # YANDEX_API_KEY = config.get('translator', 'yandex_api_key')
except (configparser.NoSectionError, configparser.NoOptionError):
    raise ValueError("配置文件中缺少必要的配置选项。")

# 允许的文件类型检查函数
def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']

# OCR 函数,指定语言
def ocr_image(image, lang='eng'):
    try:
        text = pytesseract.image_to_string(image, lang=lang)
    except Exception as e:
        logging.error(f"OCR 失败: {e}")
        text = ''
    return text

# 翻译文本函数,支持分段、并行、进度更新、重试和缓存
def translate_text(text, engine, progress_callback=None, text_lang='eng'):

    # 定义支持的语言映射
    # Microsoft 翻译 API 的要求,如果要启用自动检测源语言,应将 source 参数设置为 None 或空字符串 '',加入 souce_lang_code变量
    language_mapping = {
        'eng': 'en',
        'fra': 'fr',
        'deu': 'de',
        'spa': 'es',
        'ita': 'it',
        'jpn': 'ja',
        'kor': 'ko',
        'rus': 'ru',
        'chi_sim': 'zh-Hans',
        'chi_tra': 'zh-Hant',
    # 添加其他语言
    }

    nltk_lang = language_mapping.get(text_lang)
    source_lang_code = language_mapping.get(text_lang) #获取源语言代码 

    if nltk_lang:
        try:
            sentences = nltk.sent_tokenize(text, language=nltk_lang)
        except Exception as e:
            logging.error(f"NLTK 分句失败,使用默认分割方法:{e}")
            sentences = text.split('\n')
    else:
        # 对于不支持的语言,使用简单的分割方法
        sentences = text.split('\n')

    # 定义翻译器实例或函数
    translators = {
        'google': GoogleTranslator(source='auto', target='zh-CN'),
        'microsoft': MicrosoftTranslator(
            source=source_lang_code,
            target='zh-hans', 
            api_key=AZURE_API_KEY,
            region=AZURE_REGION
        ),
        # 如果需要,将 Yandex 的 API 密钥添加到配置文件中,并在此处使用
        # 'yandex': YandexTranslator(api_key=YANDEX_API_KEY, target='zh'),
        # 添加其他翻译器
    }
    translator = translators.get(engine)
    if not translator:
        raise ValueError(f"不支持的翻译引擎: {engine}")

    max_length = 5000  # 翻译引擎单次请求的最大字符数

    # 使用 NLTK 按句子分割文本
    sentences = nltk.sent_tokenize(text)
    chunks = []
    current_chunk = ''
    for sentence in sentences:
        if len(current_chunk) + len(sentence) + 1 <= max_length:
            current_chunk += sentence + ' '
        else:
            chunks.append(current_chunk.strip())
            current_chunk = sentence + ' '
    if current_chunk:
        chunks.append(current_chunk.strip())

    translated_chunks = [''] * len(chunks)
    total_chunks = len(chunks)
    completed_chunks = 0

    # 缓存翻译结果
    @lru_cache(maxsize=1000)
    def translate_text_chunk(chunk):
        if callable(translator):
            return translator(chunk)
        else:
            return translator.translate(chunk)

    # 定义翻译单个块的函数,带有重试机制
    def translate_chunk(index, chunk):
        nonlocal completed_chunks
        max_retries = 3
        for attempt in range(max_retries):
            try:
                translated_chunk = translate_text_chunk(chunk)
                translated_chunks[index] = translated_chunk
                break  # 成功后跳出循环
            except Exception as e:
                logging.error(f"翻译块 {index} 失败,尝试次数 {attempt + 1}: {e}")
                if attempt == max_retries - 1:
                    translated_chunks[index] = chunk  # 最后一次重试失败,使用原文
        completed_chunks += 1
        if progress_callback:
            # 假设翻译过程占总进度的 40%
            progress = 60 + int(40 * completed_chunks / total_chunks)
            progress_callback(progress)

    # 使用线程池并行翻译
    with ThreadPoolExecutor(max_workers=5) as executor:
        for idx, chunk in enumerate(chunks):
            executor.submit(translate_chunk, idx, chunk)

    translated_text = ' '.join(translated_chunks)
    return translated_text.strip()

# 后台处理函数 
# 使用 logging.info 在调试模式中输出所使用的翻译引擎和处理时间 
# 在任务开始时,记录开始时间 start_time。
# 在任务结束时,记录结束时间 end_time,计算处理时间 elapsed_time。
# 将 elapsed_time 保存到 results 字典中,以便在结果页面显示
def process_file(task_id, filepath, engine, ocr_lang):
    global results
    try:
        start_time = time.time()  # 记录开始时间

        logging.info(f"任务 {task_id}: 开始处理文件 {filepath},使用 OCR 语言 {ocr_lang},翻译引擎 {engine}")  # 输出详细信息

        with progress_lock:
            progress[task_id] = 10

        # 将 PDF 转换为图像
        images = convert_from_path(filepath)
        total_pages = len(images)
        extracted_text = ''
        for i, image in enumerate(images):
            text = ocr_image(image, lang=ocr_lang)
            extracted_text += text + '\n'
            with progress_lock:
                progress[task_id] = 10 + int(50 * (i + 1) / total_pages)

        # 翻译文本,传递 progress_callback
        def progress_callback(p):
            with progress_lock:
                progress[task_id] = p

        translated_text = translate_text(extracted_text, engine, progress_callback, text_lang=ocr_lang) #确保正确传递 ocr_lang
        with progress_lock:
            progress[task_id] = 100

        # 计算处理时间
        end_time = time.time()
        elapsed_time = end_time - start_time  # 处理所用的时间,单位为秒

        # 将处理时间保存到结果中
        result = {
            'original': extracted_text,
            'translated': translated_text,
            'elapsed_time': elapsed_time,  # 添加处理时间
            'engine': engine,           # 添加翻译引擎
            'ocr_lang': ocr_lang        # 添加 OCR 语言
        }
        results[task_id] = result

        # 删除上传的文件
        os.remove(filepath)

        logging.info(f"任务 {task_id}: 处理完成,耗时 {elapsed_time:.2f} 秒")  # 输出处理时间

    except Exception as e:
        logging.error(f"处理失败: {e}")
        with progress_lock:
            progress[task_id] = -1

# 文件上传路由
@app.route('/', methods=['GET', 'POST'])
def upload_file():
    if request.method == 'POST':
        # 检查请求中是否有文件
        if 'file' not in request.files:
            return '请求中没有文件部分', 400
        file = request.files['file']
        if file.filename == '':
            return '未选择文件', 400
        if file and allowed_file(file.filename):
            # 安全地保存文件
            filename = secure_filename(f"{uuid.uuid4().hex}_{file.filename}")
            filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
            file.save(filepath)

            # 获取选择的翻译引擎和 OCR 语言,设置默认值
            engine = request.form.get('engine', 'google')
            ocr_lang = request.form.get('ocr_lang', 'eng')

            # 创建唯一的任务 ID
            task_id = str(uuid.uuid4())
            progress[task_id] = 0

            # 启动后台处理线程
            thread = Thread(target=process_file, args=(task_id, filepath, engine, ocr_lang))
            thread.start()

            # 重定向到进度页面
            return redirect(url_for('processing', task_id=task_id))
        else:
            return '文件类型不被允许', 400
    return render_template('upload.html')

# 处理页面路由
@app.route('/processing/<task_id>')
def processing(task_id):
    return render_template('processing.html', task_id=task_id)

# 进度更新路由
@app.route('/progress/<task_id>')
def progress_status(task_id):
    def generate():
        while True:
            with progress_lock:
                status = progress.get(task_id, 0)
            yield f"data: {status}\n\n"
            if status >= 100 or status == -1:
                break
    return Response(generate(), mimetype='text/event-stream')

# 结果页面路由
@app.route('/result/<task_id>')
def result(task_id):
    result_data = results.get(task_id)
    if not result_data:
        return '结果未找到', 404

    # 获取处理时间
    elapsed_time = result_data.get('elapsed_time', 0)
    # 将处理时间格式化为 HH:MM:SS
    elapsed_time_str = str(timedelta(seconds=int(elapsed_time)))

    return render_template(
        'result.html', 
        original=result_data['original'], 
        translated=result_data['translated'], 
        elapsed_time=elapsed_time_str,
        engine=result_data['engine'],
        ocr_lang=result_data['ocr_lang']
    )

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=9006, debug=True)

2. config.ini

[translator]
azure_api_key = 5abb1abc4_deleted_half
azure_region = southcentralus
#yandex_api_key = YOUR_YANDEX_API_KEY

3. templates 下面的文件

1. upload.html

<!-- templates/upload.html -->

<!doctype html>
<html lang="zh-CN">
<head>
    <meta charset="UTF-8">
    <title>上传 PDF 文件</title>
</head>
<body>
    <h1>上传 PDF 文件以进行翻译</h1>
    <form method="post" enctype="multipart/form-data">
        <label for="fileInput">选择 PDF 文件:</label>
        <input type="file" name="file" accept=".pdf" id="fileInput" required>
        <br><br>
        <label for="engineSelect">选择翻译引擎:</label>
        <select name="engine" id="engineSelect">
            <option value="google" selected>Google 翻译</option>
            <option value="microsoft">微软翻译</option>
            <!-- 添加其他选项 -->
        </select>
        <br><br>
        <label for="ocrLangSelect">选择 OCR 语言:</label>
        <select name="ocr_lang" id="ocrLangSelect">
            <option value="eng" selected>英语 (English)</option>
            <option value="chi_sim">简体中文 (Simplified Chinese)</option>
            <option value="chi_tra">繁体中文 (Traditional Chinese)</option>
            <!-- 添加其他语言选项 -->
        </select>
        <br><br>
        <input type="submit" value="上传并开始处理">
    </form>
</body>
</html>

2. processing.html

<!-- templates/processing.html -->

<!doctype html>
<html>
<head>
    <title>处理中...</title>
    <style>
        #progress-bar {
            width: 50%;
            background-color: #f3f3f3;
            margin: 20px 0;
        }
        #progress-bar-fill {
            height: 30px;
            width: 0%;
            background-color: #4caf50;
            text-align: center;
            line-height: 30px;
            color: white;
        }
    </style>
</head>
<body>
    <h1>文件正在处理中,请稍候...</h1>
    <div id="progress-bar">
        <div id="progress-bar-fill">0%</div>
    </div>
    <script>
        var taskId = "{{ task_id }}";
        var progressBarFill = document.getElementById('progress-bar-fill');

        var eventSource = new EventSource('/progress/' + taskId);
        eventSource.onmessage = function(event) {
            var progress = event.data;
            if (progress == '-1') {
                alert('处理失败,请重试。');
                eventSource.close();
                window.location.href = '/';
            } else {
                progressBarFill.style.width = progress + '%';
                progressBarFill.innerText = progress + '%';
                if (progress >= 100) {
                    eventSource.close();
                    window.location.href = '/result/' + taskId;
                }
            }
        };
    </script>
</body>
</html>

3. result.html

<!-- templates/result.html -->
<!doctype html>
<html>
<head>
    <title>翻译结果</title>
    <style>
        /* 原有样式保持不变 */
        .container {
            display: flex;
        }
        .content {
            width: 50%;
            padding: 20px;
            box-sizing: border-box;
            overflow-y: scroll;
            height: 80vh;  /* 调整高度,给处理时间留出空间 */
        }
        .original {
            background-color: #f9f9f9;
        }
        .translated {
            background-color: #eef9f1;
        }
        pre {
            white-space: pre-wrap;
            word-wrap: break-word;
        }
    </style>
</head>
<body>
    <h1>翻译结果</h1>
    <p>处理时间:{{ elapsed_time }}</p>  <!-- 显示处理时间 -->
    <p>使用的翻译引擎:{{ engine }}</p>   <!-- 显示翻译引擎 -->
    <p>OCR 语言:{{ ocr_lang }}</p>      <!-- 显示OCR 语言 -->
    <div class="container">
        <div class="content original">
            <h2>原文</h2>
            <pre>{{ original }}</pre>
        </div>
        <div class="content translated">
            <h2>译文</h2>
            <pre>{{ translated }}</pre>
        </div>
    </div>
</body>
</html>

安装与配置

Windows 部署

        参考上面的环境准备

Docker化部署

Dockerfile

# 使用官方的 Python 3.12.3 slim 版本作为基础镜像
FROM python:3.12.3-slim

# 设置环境变量
ENV PYTHONDONTWRITEBYTECODE=1
ENV PYTHONUNBUFFERED=1


# 设置工作目录   #从P8开始,项目文件在container中位置: /app/<project name>
WORKDIR /app/pdf2tx-mm

# 复制应用程序代码到容器中  #从P8开始,项目文件在container中位置: /app/<project name>
COPY . /app/pdf2tx-mm

# 安装系统依赖项
RUN apt-get update && apt-get install -y --no-install-recommends \
    tesseract-ocr \
    libtesseract-dev \
    poppler-utils \
    && rm -rf /var/lib/apt/lists/*

# 如果需要特定的 Tesseract 语言包,例如中文简体
RUN apt-get update && apt-get install -y --no-install-recommends \
    tesseract-ocr-chi-sim \
    tesseract-ocr-chi-tra \
    && rm -rf /var/lib/apt/lists/*

# 安装 Python 依赖项
RUN pip install --no-cache-dir -r requirements.txt

# 下载 NLTK 数据
RUN python -m nltk.downloader all

# 暴露应用程序运行的端口
EXPOSE 9006

# 设置环境变量以指定Flask运行的主机和端口
ENV FLASK_RUN_HOST=0.0.0.0
ENV FLASK_RUN_PORT=9006

# 运行应用程序
CMD ["python", "app.py"]

注:#从P8开始,项目文件在container中位置: /app/<project name>
       目录要小写   所以系统中 项目名: pdf2tx-mm

requirements.txt

Flask
werkzeug
pdf2image
pytesseract
deep_translator
nltk
unstructured

创建与运行Docker镜像

创建Docker镜像

在项目文件目录,运行下面的命令:

[/share/Multimedia/2024-MyProgramFiles/8.pdf2tx-MM] # docker build -t pdf2tx-mm .

这个安装过程比较长,有2-3分钟。

运行Docker容器

如以下命令:

[/share/Multimedia/2024-MyProgramFiles/8.pdf2tx-MM] # docker run -d -p 9006:9006 --name pdf2tx-mm_container pdf2tx-mm

成功后会看到:

这时Container已经运行,可以用浏览器访问 http://localhost:9006,如演示动图:

总结:

P8是对P6的升级,也是全新的替代,但P8还有更新的地方,比添加更多的翻译机器选项,语言双向翻译,糟糕的界面等。

P6:<Project-6 pdf2tx> Python Flask 应用:图片PDF图书的中文翻译解决方案 链接 给了我解决问题的想法,实践的动力。第一次用到OCR,第一次监控进程,还有见识到了自己的代码是怎么干掉NAS的。

本来新代码中添加 ZhipuAI 做为翻译机,但是:8oct24 Zhipu 对输出的结果敏感词太复杂,比如 国家名 新疆  宗教名 民族名 这种组合就会看到 "系统检测到输入或生成内容可能包含不安全或敏感内容,请您避免输入易产生敏感内容的提 示语,感谢您的配合。"

所以放弃 ZhipuAi 智谱AI   updated on 8oct.24 pm

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/889437.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机视觉之OpenCV vs YOLO

好多开发者希望搞明白OpenCV 和YOLO区别&#xff0c;实际上&#xff0c;二者在计算机视觉领域都有广泛应用&#xff0c;但它们有很大的不同。 一、OpenCV 概述 OpenCV&#xff08;Open Source Computer Vision Library&#xff09;是一个开源的计算机视觉和机器学习软件库。它…

Cherno游戏引擎笔记(61~72)

---------------一些维护和更改------------- 》》》》 Made Win-GenProjects.bat work from every directory 代码更改&#xff1a; echo off->pushd ..\->pushd %~dp0\..\call vendor\bin\premake\premake5.exe vs2019popdPAUSE 为什么要做这样的更改&#xff1f; …

20年408数据结构

第一题&#xff1a; 解析&#xff1a;这种题可以先画个草图分析一下&#xff0c;一下就看出来了。 这里的m(7,2)对应的是这图里的m(2,7),第一列存1个元素&#xff0c;第二列存2个元素&#xff0c;第三列存3个元素&#xff0c;第四列存4个元素&#xff0c;第五列存5个元素&#…

云栖实录 | 大模型驱动,开源融合的 AI 搜索产品发布

本文根据2024云栖大会实录整理而成&#xff0c;演讲信息如下&#xff1a; 演讲人&#xff1a; 郭瑞杰 | 阿里云智能集团资深技术专家&#xff0c;阿里云 AI 搜索负责人 邹 宽&#xff5c;阿里云智能集团高级产品专家&#xff0c;阿里云 AI 搜索产品负责人 活动&#xff1a;…

【EXCEL数据处理】000021 案例 保姆级教程,附多个操作案例。EXCEL文档安全性设置。

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 【EXCEL数据处理】000021 案例 保姆级教程&#xff0c;附多个操作案例。…

【套路揭秘】新手如何一步跃升至管理层

&#x1f525;禅道AI功能让企业实现人工智能的自然接入&#xff0c;助力企业开启高效办公新阶段。 ✅AI 提词 通过AI一键提词&#xff0c;可灵活设计项目流程需要的AI提词&#xff0c;实现人工智能无缝融入产品研发流程&#xff0c;提高软件研发过程效率。 &#x1f4a1;需求…

uniapp打包安卓apk步骤

然后安装在手机上就可以啦

Apache DolphinScheduler-1.3.9源码分析(二)

引言 随着大数据的发展&#xff0c;任务调度系统成为了数据处理和管理中至关重要的部分。Apache DolphinScheduler 是一款优秀的开源分布式工作流调度平台&#xff0c;在大数据场景中得到广泛应用。 在本文中&#xff0c;我们将对 Apache DolphinScheduler 1.3.9 版本的源码进…

基于FPGA的ov5640摄像头图像采集(二)

之前讲过ov5640摄像头图像采集&#xff0c;但是只包了的摄像头驱动与数据对齐两部分&#xff0c;但是由于摄像头输入的像素时钟与HDMI输出的驱动时钟并不相同&#xff0c;所有需要利用DDR3来将像素数据进行缓存再将像素数据从DDR3中读出&#xff0c;对DDR3的读写参考米联客的IP…

JVM系列(二) -类的加载过程介绍

一、背景介绍 我们知道 Java 是先通过编译器将.java类文件转成.class字节码文件&#xff0c;然后再通过虚拟机将.class字节码文件加载到内存中来实现应用程序的运行。 那么虚拟机是什么时候加载class文件&#xff1f;如何加载class文件&#xff1f;class文件进入到虚拟机后发…

Python酷库之旅-第三方库Pandas(142)

目录 一、用法精讲 641、pandas.Timestamp.hour属性 641-1、语法 641-2、参数 641-3、功能 641-4、返回值 641-5、说明 641-6、用法 641-6-1、数据准备 641-6-2、代码示例 641-6-3、结果输出 642、pandas.Timestamp.is_leap_year属性 642-1、语法 642-2、参数 6…

【MySQL 08】复合查询

目录 1.准备工作 2.多表查询 笛卡尔积 多表查询案例 3. 自连接 4.子查询 1.单行子查询 2.多行子查询 3.多列子查询 4.在from子句中使用子查询 5.合并查询 1.union 2.union all 1.准备工作 如下三个表&#xff0c;将作为示例&#xff0c;理解复合查询 EMP员工表…

在IDEA里用XDebug调试PHP,断点....

做程序开发,调试必不可少,这里最近用到了PHP,顺便写个关于PHP的调试安装使用: 1、首先是PHP先安装xdebug扩展(还有zend的),这个我的工具是IDEA,所以安装方法也相对简单,如果你是用VSCode等应该也是一样,如下图,找到这个PHP->DEBUG 2、直接点上面的Install XDebug 就可以帮你…

C(十五)函数综合(一)--- 开公司吗?

在这篇文章中&#xff0c;杰哥将带大家 “开公司”。 主干内容部分&#xff08;你将收获&#xff09;&#xff1a;&#x1f449; 为什么要有函数&#xff1f;函数有哪些&#xff1f;怎么自定义函数以及获得函数的使用权&#xff1f;怎么对函数进行传参&#xff1f;函数中变量的…

springboot kafka多数据源,通过配置动态加载发送者和消费者

前言 最近做项目&#xff0c;需要支持kafka多数据源&#xff0c;实际上我们也可以通过代码固定写死多套kafka集群逻辑&#xff0c;但是如果需要不修改代码扩展呢&#xff0c;因为kafka本身不处理额外逻辑&#xff0c;只是起到削峰&#xff0c;和数据的传递&#xff0c;那么就需…

FastAPI框架使用枚举来型来限定参数、FastApi框架隐藏没多大意义的Schemes模型部分内容以及常见的WSGI服务器Gunicorn、uWSGI了解

一、FastAPI框架使用枚举来型来限定参数 FastAPI框架验证时&#xff0c;有时需要通过枚举的方式来限定参数只能为某几个值中的一个&#xff0c;这时就可以使用FastAPI框架的枚举类型Enum了。publish:December 23, 2020 -Wednesday 代码如下&#xff1a; #引入Enum模块 from fa…

Python常用的函数大全!

对Python的内置函数进行了非常详细且有条理的分组和描述。 第一组 print()&#xff1a;用于输出信息到控制台。input()&#xff1a;用于从用户那里接收输入。len()&#xff1a;返回对象&#xff08;如字符串、列表、元组等&#xff09;的长度。类型转换函数&#xff08;int()…

YOLOv11改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性

一、背景 目标检测和实例分割中的关键问题&#xff1a; 现有的大多数边界框回归损失函数在不同的预测结果下可能具有相同的值&#xff0c;这降低了边界框回归的收敛速度和准确性。 现有损失函数的不足&#xff1a; 现有的基于 ℓ n \ell_n ℓn​范数的损失函数简单但对各种尺度…

vSAN06:ESA与OSA对比、ESA安装、新架构、工作方式、自动策略管理、原生快照、数据压缩、故障处理

目录 vSAN ESAvSAN ESA 安装ESA新架构ESA工作方式ESA自动策略管理自适应RAID5策略 原生快照支持数据压缩的改进ESA故障处理 vSAN ESA vSAN ESA 安装 流程和OSA完全一致&#xff0c;但要注意要勾选启用vSAN ESA ESA和OSA的底层架构不一样&#xff0c;但是UI上是一致的。 生产环…

使用Python编写你的第一个算法交易程序

背景 Background ​ 最近想学习一下量化金融&#xff0c;总算在盈透投资者教育&#xff08;IBKRCampus&#xff09;板块找到一篇比较好的算法交易入门教程。我在记录实践过程后&#xff0c;翻译成中文写成此csdn博客&#xff0c;分享给大家。 ​ 如果你的英语好可以直接看原文…