Java基础(上)

Java的特性
  1. 简单易学(语法简单,上手容易);

  2. 面向对象(封装,继承,多态)

  3. 平台无关性( Java 虚拟机实现平台无关性)

  4. 支持多线程( C++ 语言没有内置的多线程机制,因此必须调用操作系统的多线程功能来进行多线程程序设计,而 Java 语言却提供了多线程支持);

  5. 可靠性(具备异常处理和自动内存管理机制);

  6. 安全性(Java 语言本身的设计就提供了多重安全防护机制如访问权限修饰符、限制程序直接访问操作系统资源);

  7. 高效性(通过 Just In Time 编译器等技术的优化,Java 语言的运行效率还是非常不错的);

  8. 支持网络编程并且很方便;

  9. 编译与解释并存;

JavaSE VS JavaEE
  • Java SE(Java Platform,Standard Edition): Java 平台标准版,Java 编程语言的基础,它包含了支持 Java 应用程序开发和运行的核心类库以及虚拟机等核心组件。Java SE 可以用于构建桌面应用程序或简单的服务器应用程序

  • Java EE(Java Platform, Enterprise Edition ):Java 平台企业版,建立在 Java SE 的基础上,包含了支持企业级应用程序开发和部署的标准和规范(比如 Servlet、JSP、EJB、JDBC、JPA、JTA、JavaMail、JMS)。 Java EE 可以用于构建分布式、可移植、健壮、可伸缩和安全的服务端 Java 应用程序,例如 Web 应用程序。

JDK、JRE、JVM之间的关系

JDK(Java Development Kit):就是一个Java的开发工具包,供开发者使用,用于创建和编译java应用程序,其中包含了JRE和一些Java的开发工具javacjavadoc(java文档生成工具)、jdb(调试器)、jconsole(监控工具)、javap(反编译工具)等 JRE(Java Runtime Environment):是Java运行时所需要的环境,它内部就包含了Java的虚拟机JVM以及一些Java的基本类库(提供常用的功能API,如 I/O 操作、网络通信、数据结构等)

从Java9开始,Java就被重构为94个模块,Java 应用可以通过新增的 jlink 工具,根据不同的需求,构建不同的RunTime(运行时),而不是所有的程序都共用同一个JRE,可以节省程序运行时占用的空间

什么是字节码?采用字节码的好处是什么

在 Java 中,虚拟机JVM 可以解析的代码就叫做字节码(扩展名为 .class 的文件),它不面向任何特定的处理器,只面向虚拟机。通过字节码的方式,Java在一定程度上解决了传统解释型语言执行效率低的问题。所以, Java 程序运行时相对来说还是高效的,由于字节码并不针对一种特定的机器,因此,Java 程序无须重新编译便可在多种不同操作系统的计算机上运行,从而实现Java语言的跨平台性

在.class文件这一步,先是使用类加载器ClassLoader进行加载,再由解释器逐行进行解释执行,由于这种方法会降低运行时的效率,所以后面引进了 JIT(Just in Time Compilation) 编译器,而 JIT 属于运行时编译。当 JIT 编译器完成第一次编译后,其会将字节码对应的机器码保存下来,下次可以直接使用  

移位运算符

移位运算符是最基本的运算符之一,几乎每种编程语言都包含这一运算符。移位操作中,被操作的数据被视为二进制数,移位就是将其向左或向右移动若干位的运算。

移位运算符在各种框架以及 JDK 自身的源码中使用还是挺广泛的,HashMap(JDK1.8) 中的 hash 方法的源码就用到了移位运算符

static final int hash(Object key) {
    int h;
    // key.hashCode():返回散列值也就是hashcode
    // ^:按位异或
    // >>>:无符号右移,忽略符号位,空位都以0补齐
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
  }

使用移位运算符的主要原因

  1. 高效:移位运算符直接对应于处理器的移位指令。现代处理器具有专门的硬件指令来执行这些移位操作,这些指令通常在一个时钟周期内完成。相比之下,乘法和除法等算术运算在硬件层面上需要更多的时钟周期来完成。
  2. 节省内存:通过移位操作,可以使用一个整数(如 int 或 long)来存储多个布尔值或标志位,从而节省内存。

移位运算符最常用于快速乘以或除以 2 的幂次方。除此之外,它还在以下方面发挥着重要作用:

  • 位字段管理:例如存储和操作多个布尔值。
  • 哈希算法和加密解密:通过移位和与、或等操作来混淆数据。
  • 数据压缩:例如霍夫曼编码通过移位运算符可以快速处理和操作二进制数据,以生成紧凑的压缩格式。
  • 数据校验:例如 CRC(循环冗余校验)通过移位和多项式除法生成和校验数据完整性。。
  • 内存对齐:通过移位操作,可以轻松计算和调整数据的对齐地址。

掌握最基本的移位运算符知识还是很有必要的,这不光可以帮助我们在代码中使用,还可以帮助我们理解源码中涉及到移位运算符的代码。

Java 中有三种移位运算符:

  • << :左移运算符,向左移若干位,高位丢弃,低位补零。x << n,相当于 x 乘以 2 的 n 次方(不溢出的情况下)。
  • >> :带符号右移,向右移若干位,高位补符号位,低位丢弃。正数高位补 0,负数高位补 1。x >> n,相当于 x 除以 2 的 n 次方。
  • >>> :无符号右移,忽略符号位,空位都以 0 补齐。

虽然移位运算本质上可以分为左移和右移,但在实际应用中,右移操作需要考虑符号位的处理方式。

由于 doublefloat 在二进制中的表现比较特殊,因此不能来进行移位操作。

移位操作符实际上支持的类型只有intlong,编译器在对shortbytechar类型进行移位前,都会将其转换为int类型再操作

Java中的数据类型

Java 中有 8 种基本数据类型,分别为:

  • 6 种数字类型:
    • 4 种整数型:byteshortintlong
    • 2 种浮点型:floatdouble
  • 1 种字符类型:char
  • 1 种布尔型:boolean
基本类型位数字节默认值取值范围
byte810-128 ~ 127
short1620-32768(-2^15) ~ 32767(2^15 - 1)
int3240-2147483648 ~ 2147483647
long6480L-9223372036854775808(-2^63) ~ 9223372036854775807(2^63 -1)
char162'u0000'0 ~ 65535(2^16 - 1)
float3240f1.4E-45 ~ 3.4028235E38
double6480d4.9E-324 ~ 1.7976931348623157E308
boolean1falsetrue、false

注意:

  1. Java 里使用 long 类型的数据一定要在数值后面加上 L,否则将作为整型解析。
  2. Java 里使用 float 类型的数据一定要在数值后面加上 f 或 F,否则将无法通过编译。
  3. char a = 'h'char :单引号,String a = "hello" :双引号。

这八种基本类型都有对应的包装类分别为:ByteShortIntegerLongFloatDoubleCharacterBoolean

基本类型和包装类型的区别?
  • 用途:除了定义一些常量和局部变量之外,我们在其他地方比如方法参数、对象属性中很少会使用基本类型来定义变量。并且,包装类型可用于泛型,而基本类型不可以。
  • 存储方式:基本数据类型的局部变量存放在 Java 虚拟机栈中的局部变量表中,基本数据类型的成员变量(未被 static 修饰 )存放在 Java 虚拟机的堆中。包装类型属于对象类型,我们知道几乎所有对象实例都存在于堆中。
  • 占用空间:相比于包装类型(对象类型), 基本数据类型占用的空间往往非常小。
  • 默认值:成员变量包装类型不赋值就是 null ,而基本类型有默认值且不是 null
  • 比较方式:对于基本数据类型来说,== 比较的是值。对于包装数据类型来说,== 比较的是对象的内存地址。所有整型包装类对象之间值的比较,全部使用 equals() 方法。

注意:基本数据类型存放在栈中是一个常见的误区! 基本数据类型的存储位置取决于它们的作用域和声明方式。如果它们是局部变量,那么它们会存放在栈中;如果它们是成员变量,那么它们会存放在堆/方法区/元空间中 

什么是自动拆装箱?

  • 装箱:将基本类型用它们对应的引用类型包装起来;
  • 拆箱:将包装类型转换为基本数据类型

注意:如果频繁拆装箱的话,也会严重影响系统的性能。我们应该尽量避免不必要的拆装箱操作。 

包装类型的缓存机制

Java 基本数据类型的包装类型的大部分都用到了缓存机制来提升性能。

Byte,Short,Integer,Long 这 4 种包装类默认创建了数值 [-128,127] 的相应类型的缓存数据,Character 创建了数值在 [0,127] 范围的缓存数据,Boolean 直接返回 True or False,源码这里就不提供了,大家自行查看

 为什么浮点数运算的时候会有精度丢失的风险?

说到了数据类型,浮点类型在存储运算时会丢失一定的精度,这个和计算机保存浮点数的机制有很大关系。我们知道计算机是二进制的,而且计算机在表示一个数字时,宽度是有限的,无限循环的小数存储在计算机时,只能被截断,所以就会导致小数精度发生损失的情况。这也就是解释了为什么浮点数没有办法用二进制精确表示

// 0.2 转换为二进制数的过程为,不断乘以 2,直到不存在小数为止,
// 在这个计算过程中,得到的整数部分从上到下排列就是二进制的结果。
0.2 * 2 = 0.4 -> 0
0.4 * 2 = 0.8 -> 0
0.8 * 2 = 1.6 -> 1
0.6 * 2 = 1.2 -> 1
0.2 * 2 = 0.4 -> 0(发生循环)
...

 如何解决浮点数运算的精度丢失问题呢?

BigDecimal 可以实现对浮点数的运算,不会造成精度丢失。通常情况下,大部分需要浮点数精确运算结果的业务场景(比如涉及到钱的场景)都是通过 BigDecimal 来做的

BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("1.00");
BigDecimal c = new BigDecimal("0.8");

BigDecimal x = a.subtract(c);
BigDecimal y = b.subtract(c);

System.out.println(x); /* 0.2 */
System.out.println(y); /* 0.20 */
// 比较内容,不是比较值
System.out.println(Objects.equals(x, y)); /* false */
// 比较值相等用相等compareTo,相等返回0
System.out.println(0 == x.compareTo(y)); /* true */

《阿里巴巴 Java 开发手册》中提到:“为了避免精度丢失,可以使用 BigDecimal 来进行浮点数的运算”。我们在使用 BigDecimal 时,为了防止精度丢失,推荐使用它的BigDecimal(String val)构造方法或者 BigDecimal.valueOf(double val) 静态方法来创建对象,《阿里巴巴 Java 开发手册》对这部分内容也有提到,如下图所示。

 

超过 long 整型的数据应该如何表示? 

 我们都知道,在 Java 中,64 位 long 整型是最大的整数类型,基本数值类型都有一个表达范围,如果超过这个范围就会有数值溢出的风险,而在 BigInteger 内部使用 int[] 数组来存储任意大小的整形数据。相对于常规整数类型的运算来说,BigInteger 运算的效率会相对较低

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/888465.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

实施威胁暴露管理、降低网络风险暴露的最佳实践

随着传统漏洞管理的发展&#xff0c;TEM 解决了因攻击面扩大和安全工具分散而产生的巨大风险。 主动式 TEM 方法优先考虑风险并与现有安全工具无缝集成&#xff0c;使组织能够在威胁被有效利用之前缓解威胁。 为什么威胁暴露管理 (TEM) 在现代网络安全策略中变得至关重要&…

爬虫——XPath基本用法

第一章XML 一、xml简介 1.什么是XML&#xff1f; 1&#xff0c;XML指可扩展标记语言 2&#xff0c;XML是一种标记语言&#xff0c;类似于HTML 3&#xff0c;XML的设计宗旨是传输数据&#xff0c;而非显示数据 4&#xff0c;XML标签需要我们自己自定义 5&#xff0c;XML被…

java8 双冒号(::)使用方法

双冒号&#xff08;::&#xff09;运算符是跟函数式接口相关的运算符&#xff0c;作为函数式接口的赋值操作。 双冒号用于静态方法 使用方法&#xff1a;将类的静态方法赋值给一个函数式接口&#xff0c;静态方法的参数个数、类型要跟函数式的接口一致。调用这个函数式接口就…

VMware中Ubuntu系统Docker正常运行但网络不通(已解决)

问题描述&#xff1a;在VMware中的Ubuntu系统下部署了Docker&#xff0c;当在docker容器中运行Eureka微服务时&#xff0c;发现Eureka启动正常&#xff0c;但无法通过网页访问该容器中Eureka。 解决办法如下&#xff1a; 1、创建桥接网络&#xff1a;test-net sudo docker n…

ES postman操作全量修改,局部修改,删除

全量修改 修改需要调用的url 地址是http://192.168.1.108:9200/shopping/_doc/1001&#xff0c;调用方法使用put 只修改指定的需求的内容的请求方式 post方式就是局部修改 http://192.168.1.108:9200/shopping/_update/1001&#xff0c;请求方式post 上图是只修改id 为1001数…

【C++】map详解

&#x1f4e2;博客主页&#xff1a;https://blog.csdn.net/2301_779549673 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01; &#x1f4e2;本文由 JohnKi 原创&#xff0c;首发于 CSDN&#x1f649; &#x1f4e2;未来很长&#…

APP自动化搭建与应用

APP自动化环境搭建 用于做APP端UI自动化&#xff0c;adb连接手机设备。 需要的工具java编辑器&#xff1a;jdk、Android-sdk软件开发工具组、appium的python客户端、nodes.js、夜神模拟器、apk包、uiautomatorviewer 第一步&#xff1a;安装sdk&#xff0c;里面包含建立工具bu…

Spring Boot中线程池使用

说明&#xff1a;在一些场景&#xff0c;如导入数据&#xff0c;批量插入数据库&#xff0c;使用常规方法&#xff0c;需要等待较长时间&#xff0c;而使用线程池可以提高效率。本文介绍如何在Spring Boot中使用线程池来批量插入数据。 搭建环境 首先&#xff0c;创建一个Spr…

docker compose入门5—创建一个3副本的应用

1. 定义服务 version: 3.8 services:web:image: gindemo:v2deploy:replicas: 3ports:- "9090" 2. 启动服务 docker compose -f docker-compose.yml up -d 3. 查看服务 docker compose ps 4. 访问服务

LeetCode讲解篇之852. 山脉数组的峰顶索引

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 我们可以采用二分查找&#xff0c;每次查询区间中点元素与中点下一个元素比较 如果中点元素大于其下一个元素&#xff0c;则表示从中点开始向右是递减趋势&#xff0c;那峰值索引一定小于等于中点&#xff0c;我…

留存率的定义与SQL实现

1.什么是留存率 留存率是指在特定时间段内&#xff0c;仍然继续使用某项产品或服务的用户占用户总数的百分比。 通常&#xff0c;留存率会以日&#xff0c;周&#xff0c;或月为单位进行统计和分析。 2.SQL留存率常见问题 1.计算新用户登录的日期的次日留存率以及3日留存率 …

如何实现 C/C++ 与 Python 的通信?

在现代编程中&#xff0c;C/C与Python的通信已经成为一种趋势&#xff0c;尤其是在需要高性能和灵活性的场景中。本文将深入探讨如何实现这两者之间的互通&#xff0c;包括基础和高级方法&#xff0c;帮助大家在混合编程中游刃有余。 C/C 调用 Python&#xff08;基础篇&#…

生成正激波表的代码

k1.4 import math import numpy as np import pandas as pd #Ma1到p之比 def Ma2p(Ma1,k):return 2*k*Ma1**2/(k1)-(k-1)/(k1) def Ma2rho(Ma1,k):return (k1)*Ma1**2/(2(k-1)*Ma1**2) def Ma2T(Ma1,k):return 1/Ma1**2*(2/(k1))**2*(k*Ma1**2-(k-1)/2)*(1(k-1)/2*Ma1**2) def…

国外电商系统开发-运维系统文件上传

文件上传&#xff0c;是指您把您当前的PC电脑上的文件批量的上传到远程服务器上&#xff0c;在这里&#xff0c;您可以很轻松的通过拖动方式上传&#xff0c;只需要动动鼠标就搞定。 第一步&#xff0c;您应该选择要上传的服务器&#xff1a; 选择好了以后&#xff0c;点击【确…

小程序-全局数据共享

目录 1.什么是全局数据共享 2. 小程序中的全局数据共享方案 MboX 1. 安装 MobX 相关的包 2. 创建 MobX 的 Store 实例 3. 将 Store 中的成员绑定到页面中 4. 在页面上使用 Store 中的成员 5. 将 Store 中的成员绑定到组件中 6. 在组件中使用 Store 中的成员 1.什么是全…

谷歌发布了日语版的 Gemma2 模型——gemma-2-2b-jpn-it

Gemma 是一系列同类最佳的开放式模型&#xff0c;其灵感和技术源自 Gemini 系列模型。 它们是具有开放权重的文本到文本、纯解码器大型语言模型。 Gemma 模型非常适合各种文本生成任务&#xff0c;包括问题解答、摘要和推理。 Gemma-2-JPN 是一个针对日语文本进行微调的 Gemma…

使用微服务Spring Cloud集成Kafka实现异步通信

在微服务架构中&#xff0c;使用Spring Cloud集成Apache Kafka来实现异步通信是一种常见且高效的做法。Kafka作为一个分布式流处理平台&#xff0c;能够处理高吞吐量的数据&#xff0c;非常适合用于微服务之间的消息传递。 微服务之间的通信方式包括同步通信和异步通信。 1&a…

【CTF Web】Pikachu CSRF(get) Writeup(CSRF+GET请求+社会工程学)

CSRF(跨站请求伪造)概述 Cross-site request forgery 简称为“CSRF”&#xff0c;在CSRF的攻击场景中攻击者会伪造一个请求&#xff08;这个请求一般是一个链接&#xff09;&#xff0c;然后欺骗目标用户进行点击&#xff0c;用户一旦点击了这个请求&#xff0c;整个攻击就完成…

vmstat命令:系统性能监控

一、命令简介 ​vmstat​ 是一种在类 Unix 系统上常用的性能监控工具&#xff0c;它可以报告虚拟内存统计信息&#xff0c;包括进程、内存、分页、块 IO、陷阱&#xff08;中断&#xff09;和 CPU 活动等。 ‍ 二、命令参数 2.1 命令格式 vmstat [选项] [ 延迟 [次数] ]2…

docker快速上手

一个轻量的虚拟机&#xff0c;让程序员不再纠结于环境部署&#xff0c;更多集中于代码编写&#xff0c;基础建设&#xff0c;开发 作用&#xff1a; 打包&#xff1a;把你软件运行所需的所有东西打包到一起 分发&#xff1a;把你打包好的“安装包”上传到一个镜像仓库&#…