回归预测 | Matlab基于SABO-SVR减法平均算法优化支持向量机的数据多输入单输出回归预测

回归预测 | Matlab基于SABO-SVR减法平均算法优化支持向量机的数据多输入单输出回归预测

目录

    • 回归预测 | Matlab基于SABO-SVR减法平均算法优化支持向量机的数据多输入单输出回归预测
      • 预测效果
      • 基本描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab基于SABO-SVR减法平均算法优化支持向量机的数据多输入单输出回归预测(完整源码和数据)
2.选择最佳的SVM核函数参数c和g;
3.多特征输入单输出的回归预测。程序内注释详细,excel数据,直接替换数据就可以用。
4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式资源处下载Matlab基于SABO-SVR减法平均算法优化支持向量机的数据多输入单输出回归预测。
%%  参数设置
%%  优化算法
[Best_score,Best_pos, curve] = (pop, Max_iteration, lb, ub, dim, fun); 

%%  获取最优参数
bestc = Best_pos(1, 1);  
bestg = Best_pos(1, 2); 

%%  建立模型
cmd = [' -t 2 ', ' -c ', num2str(bestc), ' -g ', num2str(bestg), ' -s 3 -p 0.01 '];
model = svmtrain(t_train, p_train, cmd);

%%  仿真预测
[t_sim1, error_1] = svmpredict(t_train, p_train, model);
[t_sim2, error_2] = svmpredict(t_test , p_test , model);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1 =T_sim1';
T_sim2 =T_sim2';
%%  适应度曲线
figure;
plot(1 : length(curve), curve, 'LineWidth', 1.5);
title('适应度曲线', 'FontSize', 13);
xlabel('迭代次数', 'FontSize', 13);
ylabel('适应度值', 'FontSize', 13);
grid
set(gcf,'color','w')

%%  相关指标计算
%%  均方根误差
toc
%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
set(gcf,'color','w')
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
set(gcf,'color','w')
%%  均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);

%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;

SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/887151.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【api连接ChatGPT的最简单方式】

通过api连接ChatGPT的最简单方式 建立client 其中base_url为代理,若连接官网可省略;配置环境变量 from openai import OpenAI client OpenAI(base_url"https://api.chatanywhere.tech/v1" )或给出api和base_url client OpenAI(api_key&…

数据仓库简介(一)

数据仓库概述 1. 什么是数据仓库? 数据仓库(Data Warehouse,简称 DW)是由 Bill Inmon 于 1990 年提出的一种用于数据分析和挖掘的系统。它的主要目标是通过分析和挖掘数据,为不同层级的决策提供支持,构成…

wordpress源码资源站整站打包32GB数据,含6.7W条资源数据

源码太大了,足足32gb,先分享给大家。新手建立资源站,直接用这个代码部署一下,数据就够用了。辅助简单做下seo,一个新站就OK了。 温馨提示:必须按照顺序安装 代码下载

【word脚注】双栏设置word脚注,脚注仅位于左栏,右栏不留白

【word脚注】双栏设置word脚注,脚注仅位于左栏,右栏不留白 调整前效果解决方法调整后效果参考文献 调整前效果 调整前:脚注位于左下角,但右栏与左栏内容对其,未填充右下角的空白区域 解决方法 备份源文件复制脚注内…

【HTML|第1期】HTML5视频(Video)元素详解:从起源到应用

日期:2024年9月9日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉在这里插入代码片得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对…

【机器学习】探索GRU:深度学习中门控循环单元的魅力

目录 🍔 GRU介绍 🍔 GRU的内部结构图 2.1 GRU结构分析 2.2 GRU工作原理 2.4 Bi-GRU介绍 2.3 使用Pytorch构建GRU模型 2.5 GRU优缺点 🍔 小结 学习目标 🍀 了解GRU内部结构及计算公式. 🍀 掌握Pytorch中GRU工具…

MySQL--数据库约束(详解)

目录 一、前言二、概念三、数据库约束3.1 约束类型3.1.1 NOT NULL 约束3.1.2 UNIQUE (唯一)3.1.3 DEFAULT(默认)3.1.4 PRIMARY KEY(主键)3.1.5 FOREIGN KEY(外键)3.1.6 CHECK 四、总结 一、前言…

[Linux#61][UDP] port | netstat | udp缓冲区 | stm32

目录 0. 预备知识 1. 端口号的划分范围 2. 认识知名端口号 3. netstat 命令 4. pidof 命令 二.UDP 0.协议的学习思路 1. UDP 协议报文格式 报头与端口映射: 2. UDP 的特点 面向数据报: 3. UDP 的缓冲区 4. UDP 使用注意事项 5. 基于 UDP 的…

基于Keras的U-Net模型在图像分割与计数中的应用

关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝,拥有2篇国家级人工智能发明专利。 社区特色&a…

11. 异步编程

计算机的核心部分,即执行构成我们程序的各个步骤的部分,称为处理器。我们迄今为止看到的程序都会让处理器忙个不停,直到它们完成工作。像操作数字的循环这样的程序的执行速度几乎完全取决于计算机处理器和内存的速度。但是,许多程…

相机基础概念

景深: 景深的定义 DOF:depth of filed 是指在摄影机镜头或其他成像器前沿能够取得清晰图像的成像所测定的被摄物体前后距离范围。光圈、镜头、及焦平面到拍摄物的距离是影响景深的重要因素。定义3:在镜头前方(焦点的前、后)有一…

螺蛳壳里做道场:老破机搭建的私人数据中心---Centos下docker学习02(yum源切换及docker安装配置)

2 前期工作 2.1 切换yum源并更新 删除/etc/yum.repos.d/原有repo文件,将Centos-7.repo库文件拷贝到该目录下。 然后清楚原有缓存yum clean all 生成新的缓存yum makecache 更新yum update –y 然后再确认/etc/yum.repos.d/不会有其他库文件,只留下…

气象大模型天气预测对物流的影响

随着科技的进步,气象大模型(GFM, Global Forecast Model)的广泛应用大大提升了天气预测的精度和时效性。这些模型基于大数据、机器学习、人工智能等技术,能够模拟大气环流,预测未来的天气状况。对于物流行业而言&#…

Pikachu-暴力破解-验证码绕过(on client)

访问页面, 从burpsuite 上看到返回的源代码; 验证码生成时通过 createCode 方法生成,在前端页面生成; 同时也是在前端做的校验; 直接验证;F12 -- 网络,随便输入个账号、密码、验证码&#xff0…

C初阶(八)选择结构(分支结构)--if、else、switch

前言: C语言是用来解决问题的,除了必要的数据输入与输出(见前文),还要有逻辑结构。其中基本可以归为三类:顺序结构、选择结构、循环结构。今天,杰哥提笔写的是关于选择结构(又叫“分…

CSP-J Day 5 模拟赛补题报告

姓名:王胤皓,校区:和谐校区,考试时间: 2024 2024 2024 年 10 10 10 月 5 5 5 日 9 : 00 : 00 9:00:00 9:00:00~ 12 : 30 : 00 12:30:00 12:30:00,学号: S 07738 S07738 S07738 请关注作者的…

9.30学习记录(补)

手撕线程池: 1.进程:进程就是运行中的程序 2.线程的最大数量取决于CPU的核数 3.创建线程 thread t1; 在使用多线程时,由于线程是由上至下走的,所以主程序要等待线程全部执行完才能结束否则就会发生报错。通过thread.join()来实现 但是如果在一个比…

CentOS 替换 yum源 经验分享

视频教程在bilibili:CentOS 替换 yum源 经验分享_哔哩哔哩_bilibili问题原因 解决方法 1. 进入镜像目录 [rootlocalhost ~]# cd /etc/yum.repos.d/ 2.备份文件 [rootlocalhost yum.repos.d]# rename repo bak * 3.寻找阿里镜像源复制 https://developer.aliyun.com/mirror/ …

Redis基础三(redis的高级配置)

Redis进阶配置 一、Redis持久化操作 ​ 持久化就是把内存的数据写到磁盘中去,防止服务宕机了内存数据丢失。(Redis 数据都放在内存中。如果机器挂掉,内存的数据就不存在。所以需要做持久化,将内存中的数据保存在磁盘&#xff0c…

聊聊Mysql的MVCC

1 什么是MVCC? MVCC,是Multiversion Concurrency Control的缩写,翻译过来是多版本并发控制,和数据库锁一样,他也是一种并发控制的解决方案。 我们知道,在数据库中,对数据的操作主要有2种&#…