《Linux从练气到飞升》No.17 进程创建

  

🕺作者: 主页

我的专栏
C语言从0到1
探秘C++
数据结构从0到1
探秘Linux
菜鸟刷题集

😘欢迎关注:👍点赞🙌收藏✍️留言

🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的很重要,有问题可在评论区提出,感谢阅读!!!

目录

前言

fork函数

fork函数返回值

写时拷贝

fork常规用法

fork调用失败的原因

fork面试题

后记


前言

之前我们在进程基本概念中讲述过fork可以创建子进程(请在《探秘Linux》专栏中查看),但是我们只是大概讲述了一下它的功能和大致原理,算作是初识,本篇将更为详细的讲述它的用法——创建进程

fork函数

在linux中fork函数时非常重要的函数,它从已存在进程中创建一个新进程。新进程为子进程,而原进程为父进程。

在我们想要使用fork函数时,注意一下几点:

#include <unistd.h>//记得包头文件

pid_t fork(void);//fork函数的返回值是pid_t,注意转化()

返回值:子进程中返回0,父进程返回子进程id,出错返回-1

 进程调用fork函数以后,内核做了什么?

  • 分配新的内存块和内核数据结构给子进程
  • 将父进程部分数据结构内容拷贝至子进程
  • 添加子进程到系统进程列表当中
  • fork返回,开始调度器调度

如下图:

 当一个进程调用fork之后,就有两个二进制代码相同的进程。而且它们都运行到相同的地方。但每个进程都将可以开始它们自己的旅程,我们来测试一下~

#include <stdio.h>
#include <unistd.h>

int main( void )
{
    pid_t pid;
    printf("Before: pid is %d\n", getpid());
    if ( (pid=fork()) == -1 )perror("fork()"),exit(1);
    printf("After:pid is %d, fork return %d\n", getpid(), pid);
    sleep(1);
    return 0; 
}

 运行结果:

 这里看到了三行输出,

一行before,两行after。

进程4863先打印before消息,然后它有打印after。

另一个after消息有4864打印的。

注意到进程4864没有打印before,

为什么呢?如下图所示

 

 所以,fork之前父进程独立执行,fork之后,父子两个执行流分别执行。注意,fork之后,谁先执行完全由调度器决定。

fork函数返回值

  • 子进程返回0
  • 父进程返回的是子进程的pid

写时拷贝

通常,父子代码共享,父子再不写入时,数据也是共享的,当任意一方试图写入,便以写时拷贝的方式各自一份副本。具体见下图:

fork常规用法

  • 一个父进程希望复制自己,使父子进程同时执行不同的代码段。例如,父进程等待客户端请求,生成子进程来处理请求。
  • 一个进程要执行一个不同的程序。例如子进程从fork返回后,调用exec函数

fork调用失败的原因

  • 系统中有太多的进程,进程太多,可能就没有多余的内存来创建进程了,进而导致fork调用失败。
  • 实际用户的进程数超过了限制

fork面试题

请你描述一下folk创建子进程,操作系统都做了什么?

我们推一下,fork创建子进程,也就是说系统里多了一个进程。进程等于内核数据结构加进程代码和数据,而进程代码和数据一般从磁盘中来。也就是你的c或c++程序加载之后的结果。那么我们再倒退回去,folk创建子进程,操作系统就会从磁盘中加载c或c++程序加载之后的结果,然后同时创建内核数据结构,包括地址空间、页表等,进而形成一个新的进程。

fork之后子进程是否能够使用父进程的全部代码?

创建子进程,给子进程分配对应的内核结构。必须子进程自己独有了,这是因为进程具有独立性,理论上子进程要有自己的代码和数据。可是一般而言我们没有加载的过程,也就是说子进程没有自己的代码和数据,所以子进程只能使用父进程的代码数据。但是代码都是不可被写的,只能读取,所以父子共享没有问题,但是数据可能被修改的,所以必须分离。

但是我们还没有说到一个问题:子进程代码共享是否是所有的?还是只是说fork之后的?

实际上我们的代码汇编之后会有很多行代码,而且每行代码加载到内存之后都有对应的地址,因为进程随时可能被中断,可能并没有执行完就中断了,下次回来还必须从之前的位置继续运行。就要要求 CPU必须随时记录下当前进程执行的位置,所以CPU内有对应的寄存器,数据用来记录当前进程的执行位置。我们之前讲过,寄存器在CPU内只有一份,寄存器的数据是可有多份的,这个寄存器数据也就是进程的上下文。那么这个进程的上下文数据要不要给子进程呢?答案是要的,虽然复制进程各自调的,各自会修改EIP(程序计数器),但是已经不重要了,因为子进程已经认为自己的EIP其实值就是fork之后的代码,它必须共享所有的代码。

操作系统为何要选择写时拷贝技术对父子进程进行分离?

总结起来是两点:

一、用的时候再给你分配,是高效使用内存的一种表现。

二、操作系统无法在代码执行前预知哪些空间会被访问?

展开谈谈:

试想一下,对于数据而言,创建进程的时候,就直接拷贝分离。是不是会浪费内存?可能拷贝子进程根本就不会用到的数据空间,即便是用到了,也可能只是读取,而我们创建子进程,不需要将不会被访问的或者只会读取的数据拷贝一份。

但是,什么数据值得拷贝呢?将来会被父或子进程写入的数据。但是一般而言,即便是操作系统,也无法提前知道哪些空间可能会被泄露,而且就算提前拷贝了,也不一定会立马使用。所以操作系统选择了写时拷贝技术来进行将父子进程的数据进行分离。写时拷贝是一种延迟申请技术,它可以提高整机内存的使用率的同时也完成了进程独立性的技术保证。

后记

本篇我们较为详细的讲述了fork函数的使用,以及它的相关原理,请结合进程概念那篇博客一起食用~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/88695.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring MVC详解

文章目录 一、SpringMVC1.1 引言1.2 MVC架构1.2.1 概念1.2.2 好处 二、开发流程2.1 导入依赖2.2 配置核心(前端)控制器2.3 后端控制器2.4 配置文件2.5 访问 三、接收请求参数3.1 基本类型参数3.2 实体收参【重点】3.3 数组收参3.4 集合收参 【了解】3.5 路径参数3.6 中文乱码 四…

JDK JRE JVM 三者之间的详解

JDK : Java Development Kit JRE: Java Runtime Environment JVM : JAVA Virtual Machine JDK : Java Development Kit JDK : Java Development Kit【 Java开发者工具】&#xff0c;可以从上图可以看出&#xff0c;JDK包含JRE&#xff1b;java自己的一些开发工具中&#…

容灾设备系统组成,容灾备份系统组成包括哪些

随着信息技术的快速发展&#xff0c;企业对数据的需求越来越大&#xff0c;数据已经成为企业的核心财产。但是&#xff0c;数据安全性和完整性面临巨大挑战。在这种环境下&#xff0c;容灾备份系统应运而生&#xff0c;成为保证企业数据安全的关键因素。下面我们就详细介绍容灾…

Vue3项目实战

目录 一、项目准备 二、基础语法应用 2.1、mixin应用 2.2、网络请求 2.3、显示与隐藏 2.4、编程式路由跳转 2.5、下载资料 2.6、调用方法 2.7、监听路由变化 2.8、pinia应用 (1)存储token(user.js) (2)全选全不选案例(car.js) 一、项目准备 下载&#xff1a; cnp…

Bigemap在地质工程勘察行业中的应用

1.选择Bigemap的原因&#xff1a; 师兄在测绘局工作&#xff0c;买过全能版&#xff0c;帮我下载过高程数据&#xff0c;我觉得效果可以&#xff0c;于是联系到软件公司进行试用、咨询 2.使用场景&#xff1a; 影像、等高线、地形等资料下载&#xff0c;下载完放进arcgis 软件&…

通俗理解拉格朗日乘数法

再理解拉格朗日乘数法 笔记来源&#xff1a;Understanding Lagrange Multipliers Visually 本人相关博客&#xff1a; 1.方向导数和梯度向量 2.最小二乘和回归线、拉格朗日乘数、二元泰勒多项式、带约束变量的偏导数 函数&#xff1a; z f ( x , y ) zf(x,y) zf(x,y)&#x…

LinkedList的顶级理解

目录 1.LinkedList的介绍 LinkedList的结构 2.LinkedList的模拟实现 2.1创建双链表 2.2头插法 2.3尾插法 2.4任意位置插入 2.5查找关键字 2.6链表长度 2.7遍历链表 2.8删除第一次出现关键字为key的节点 2.9删除所有值为key的节点 2.10清空链表 2.11完整代码 3.…

蓝蓝设计ui设计公司作品--泛亚高科-光伏电站控制系统界面设计

泛亚高科(北京)科技有限公司&#xff08;以下简称“泛亚高科”&#xff09;&#xff0c;一个以实时监控、高精度数值计算为基础的科技公司&#xff0c; 自成立以来&#xff0c;组成了以博士、硕士为核心的技术团队&#xff0c;整合了华北电力大学等高校资源&#xff0c;凭借在电…

运算放大器发展史

在内部集成了一个补偿电容 MPS公司OP07推出后&#xff0c;大受欢迎。各家厂商都推出了自己的 这4款都是可以替换的

Linux搭建SSLVpn

安装http、ssl服务 编辑http配置文件 修改http的136行&#xff0c;276行以及990行 1、136行将监听端口注释 2、276行和990行修改为自己的域名和要访问的端口 修改http文档最后那部分 新添ssl配置信息&#xff0c;将端口修改为443&#xff08;截图错了server.key应该放在/etc/…

告别gazebo开启长时间等待 设置gazebo打开不再联网找模型

学过ros的对gazebo仿真软件应该都不会陌生&#xff0c;但是有时启动真的很烦人&#xff0c;经常卡在这个地方很长时间&#xff0c;查阅资料 gazebo软件开启的时候会自动从国外官网下载模型&#xff0c;因此这个过程比较漫长&#xff0c;原因是网站在国外&#xff0c;下载不顺畅…

GaussDB数据库SQL系列:DROP TRUNCATE DELETE

目录 一、前言 二、GaussDB的 DROP & TRUNCATE & DELETE 简述 1、命令简述 2、命令比对 三、GaussDB的DROP TABLE命令及示例 1、功能描述 2、语法 3、示例 四、GaussDB的TRUNCATE命令及示例 1、功能描述 2、语法 3、示例 4、示例 五、GaussDB的DELETE命令…

【AWS】安装配置适用于 Eclipse 的 AWS 工具包

目录 0.环境 1.步骤 1&#xff09;安装Eclipse 2&#xff09;安装AWS工具包 ① 在这个路径下点开安装软件的界面 ② 点击【Add】打开添加窗口 ③ 输入aws的工具包地址 ④ 勾选需要的工具&#xff0c;点击【Next】 ⑤ 将要安装的工具&#xff0c;点击【Next】 ⑥ 选择接受…

【Linux网络】Cookie和session的关系

目录 一、Cookie 和 session 共同之处 二、Cookie 和 session 区别 2.1、cookie 2.2、session 三、cookie的工作原理 四、session的工作原理 一、Cookie 和 session 共同之处 Cookie 和 Session 都是用来跟踪浏览器用户身份的会话方式。 二、Cookie 和 session 区别 2.…

R包开发1:RStudio 与 GitHub建立连接

目录 1.安装Git 2-配置Git&#xff08;只需配置一次&#xff09; 3-用SSH连接GitHub(只需配置一次) 4-创建Github远程仓库 5-克隆仓库到本地 目标&#xff1a;创建的R包&#xff0c;包含Git版本控制&#xff0c;并且能在远程Github仓库同步&#xff0c;相当于发布在Github。…

Nexus2迁移升级到Nexus3

与 Nexus 2.x 相比&#xff0c;Nexus 3.x 为我们提供了更多实用的新特性。SonaType 官方建议我们&#xff0c;使用最新版本 Nexus 2.x 升级到最新版本 Nexus 3.x&#xff0c;并在 Nexus 升级兼容性 一文中为我们提供了各个版本 Nexus 升级到最新版本 Nexus 3.x 的流程&#xff…

C++ malloc/free/new/delete详解(内存管理)

C malloc/free/new/delete详解&#xff08;内存管理&#xff09; malloc/free典型用法内存分配实现过程brk和mmap申请小于128k的内存申请大于128k的内存释放内存brk和mmap的区别 new/delete典型用法 内存分配实现过程new/delete和malloc/free的区别malloc对于给每个进程分配的内…

服务器数据恢复-HP EVA存储VDISK被删除的数据恢复案例

服务器数据恢复环境&#xff1a; 某单位有一台HP EVA存储&#xff0c;连接2组扩展柜&#xff0c;扩展柜中有12块FATA磁盘和10块FC磁盘&#xff0c;不确定数量的LUN&#xff0c;主机安装WINDOWS SERVER操作系统&#xff0c;存储设备用来存放该单位的重要资料。 服务器故障初检&…

java-红黑树

节点内部存储 红黑树规则 或者&#xff1a; 红黑树添加节点规则&#xff1a; 添加节点默认是红色的&#xff08;效率高&#xff09; 红黑树示例 注&#xff1a;红黑树增删改查性能都很好