【在Linux世界中追寻伟大的One Piece】System V共享内存

目录

1 -> System V共享内存

1.1 -> 共享内存数据结构

1.2 -> 共享内存函数

1.2.1 -> shmget函数

1.2.2 -> shmot函数

1.2.3 -> shmdt函数

1.2.4 -> shmctl函数

 1.3 -> 实例代码

2 -> System V消息队列

3 -> System V信号量


1 -> System V共享内存

共享内存区是最快的IPC形式。一旦这样的内存映射到共享它的进程的地址空间,这些进程间数据传递不再涉及到内核,换句话说是进程不再通过执行进入内核的系统调用来传递彼此的数据。

示意图:

1.1 -> 共享内存数据结构

struct shmid_ds {
	struct ipc_perm shm_perm; /* operation perms */
	int shm_segsz; /* size of segment (bytes) */
	__kernel_time_t shm_atime; /* last attach time */
	__kernel_time_t shm_dtime; /* last detach time */
	__kernel_time_t shm_ctime; /* last change time */
	__kernel_ipc_pid_t shm_cpid; /* pid of creator */
	__kernel_ipc_pid_t shm_lpid; /* pid of last operator */
	unsigned short shm_nattch; /* no. of current attaches */
	unsigned short shm_unused; /* compatibility */
	void* shm_unused2; /* ditto - used by DIPC */
	void* shm_unused3; /* unused */
};

1.2 -> 共享内存函数

1.2.1 -> shmget函数

功能:用来创建共享内存
原型
int shmget(key_t key, size_t size, int shmflg);
参数
key:这个共享内存段名字
size:共享内存大小
shmflg:由九个权限标志构成,它们的用法和创建文件时使用的mode模式标志是一样的
返回值:成功返回一个非负整数,即该共享内存段的标识码;失败返回-1

1.2.2 -> shmot函数

功能:将共享内存段连接到进程地址空间
原型
void *shmat(int shmid, const void *shmaddr, int shmflg);
参数
shmid: 共享内存标识
shmaddr:指定连接的地址
shmflg:它的两个可能取值是SHM_RND和SHM_RDONLY
返回值:成功返回一个指针,指向共享内存第一个节;失败返回-1

说明:

shmaddr为NULL,核心自动选择一个地址
shmaddr不为NULL且shmflg无SHM_RND标记,则以shmaddr为连接地址。
shmaddr不为NULL且shmflg设置了SHM_RND标记,则连接的地址会自动向下调整为SHMLBA的整数倍。公式:shmaddr -
(shmaddr % SHMLBA)
shmflg=SHM_RDONLY,表示连接操作用来只读共享内存

1.2.3 -> shmdt函数

功能:将共享内存段与当前进程脱离
原型
int shmdt(const void *shmaddr);
参数
shmaddr: 由shmat所返回的指针
返回值:成功返回0;失败返回-1
注意:将共享内存段与当前进程脱离不等于删除共享内存段

1.2.4 -> shmctl函数

功能:用于控制共享内存
原型
int shmctl(int shmid, int cmd, struct shmid_ds *buf);
参数
shmid:由shmget返回的共享内存标识码
cmd:将要采取的动作(有三个可取值)
buf:指向一个保存着共享内存的模式状态和访问权限的数据结构
返回值:成功返回0;失败返回-1
命令说明
IPC_STAT把shmid_ds结构中的数据设置为共享内存的当前关联值
IPC_SET在进程有足够权限的前提下,把共享内存的当前关联值设置为shmid_ds数据结构中给出的值
IPC_RMID删除共享内存段

 1.3 -> 实例代码

测试代码结构

# ls
client.c comm.c comm.h Makefile server.c
# cat Makefile
.PHONY:all
all:server client
client:client.c comm.c
gcc -o $@ $^
server:server.c comm.c
gcc -o $@ $^
.PHONY:clean
clean:
rm -f client server

comm.h

#ifndef COMM_H
#define COMM_H
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define PATHNAME "."
#define PROJ_ID 0x6666
int createShm(int size);
int destroyShm(int shmid);
int getShm(int size);
#endif

comm.c

#include "comm.h"

static int commShm(int size, int flags)
{
	key_t _key = ftok(PATHNAME, PROJ_ID);
	if (_key < 0) 
	{
		perror("ftok");

		return -1;
	}

	int shmid = 0;
	if ((shmid = shmget(_key, size, flags)) < 0) 
	{
		perror("shmget");

		return -2;
	}

	return shmid;
}

int destroyShm(int shmid)
{
	if (shmctl(shmid, IPC_RMID, NULL) < 0) 
	{
		perror("shmctl");

		return -1;
	}

	return 0;
}

int createShm(int size)
{
	return commShm(size, IPC_CREAT | IPC_EXCL | 0666);
}

int getShm(int size)
{
	return commShm(size, IPC_CREAT);
}

server.c

#include "comm.h"

int main()
{
	int shmid = createShm(4096);
	char* addr = shmat(shmid, NULL, 0);

	sleep(2);
	int i = 0;
	while (i++ < 26) 
	{
		printf("client# %s\n", addr);

		sleep(1);
	}

	shmdt(addr);

	sleep(2);

	destroyShm(shmid);

	return 0;
}

client.c

#include "comm.h"

int main()
{
	int shmid = getShm(4096);
	sleep(1);

	char* addr = shmat(shmid, NULL, 0);
	sleep(2);

	int i = 0;
	while (i < 26) 
	{
		addr[i] = 'A' + i;
		i++;
		addr[i] = 0;
		sleep(1);
	}

	shmdt(addr);

	sleep(2);

	return 0;
}

ctrl+c终止进程,再次重启。

2 -> System V消息队列

System V消息队列是一种进程间通信(IPC)机制,它允许进程通过消息的形式进行数据交换。消息队列由内核管理,可以存储多种类型的消息,并且支持消息的有序存取。每个消息都有一个类型字段,接收进程可以根据消息类型来接收特定的消息。

消息队列的关键数据结构

消息队列的状态和配置信息存储在struct msqid_ds数据结构中,它包含了队列的权限、消息计数、最大消息大小、队列字节数、最近操作进程的PID等信息。

消息队列的创建与操作

  • 创建或打开消息队列使用msgget函数,该函数接受一个键值(key)和标志(msgflg)作为参数。如果消息队列不存在且msgflg包含IPC_CREAT标志,则会创建一个新的消息队列。
  • 向消息队列发送消息使用msgsnd函数,接收消息使用msgrcv函数。这些函数允许进程指定消息的类型和大小,以及接收消息时的行为(例如阻塞或非阻塞)。
  • 控制消息队列的状态,如删除消息队列或获取消息队列的统计信息,使用msgctl函数。

消息队列的编程示例

在编程实践中,可以通过创建发送进程和接收进程来演示消息队列的使用。发送进程将数据封装成消息并发送到队列,接收进程则从队列中取出消息进行处理。这种模式适用于生产者-消费者场景,其中一个或多个进程产生数据(生产者),另一个或多个进程消费数据(消费者)。

消息队列的实际应用

消息队列不仅限于简单的数据传递,它们还可以用于更复杂的通信模式,如实现信号量或实现更高级的同步机制。在多进程或多线程的应用程序中,消息队列提供了一种灵活且高效的通信手段。

3 -> System V信号量

System V信号量是一种进程间同步机制,它允许多个进程通过对共享资源的访问计数来进行协调。信号量可以是二元的(用于互斥),也可以是非负整数(用于资源计数)。System V信号量由内核管理,并通过一系列系统调用来创建、操作和销毁。

System V信号量的关键数据结构

System V信号量的核心数据结构是semid_ds,它包含了信号量集的权限、信号量的值、信号量的状态信息等。每个信号量集中的信号量由sem结构表示,其中包含信号量的当前值和相关的进程计数信息。

System V信号量的创建与操作

创建信号量集使用semget函数,该函数接受一个键值(key)、信号量的数量(nsems)和标志(semflg)作为参数。操作信号量集使用semop函数,该函数接受信号量集的标识符、指向sembuf结构数组的指针以及操作的数量作为参数。sembuf结构定义了对信号量执行的具体操作,如等待(P)或信号(V)操作。

System V信号量的编程示例

在编程中,可以通过定义信号量集、初始化信号量值、执行P和V操作以及最终销毁信号量集来实现进程间同步。例如,一个生产者-消费者问题可以通过信号量来确保生产者不会超过消费者的消费速度,防止缓冲区溢出。

System V信号量的实际应用

System V信号量广泛应用于操作系统中,用于实现进程间的同步和互斥。它们可以用于控制对共享资源的访问,管理进程的执行顺序,以及实现更复杂的同步算法。


感谢各位大佬支持!!!

互三啦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/886056.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于两分支卷积和 Transformer 的轻量级多尺度特征融合超分辨率网络 !

当前的单图像超分辨率&#xff08;SISR&#xff09;算法有两种主要的深度学习模型&#xff0c;一种是基于卷积神经网络&#xff08;CNN&#xff09;的模型&#xff0c;另一种是基于Transformer的模型。前者利用不同卷积核大小的卷积层堆叠来设计模型&#xff0c;使得模型能够更…

OpenFeign微服务部署

一.开启nacos 和redis 1.查看nacos和redis是否启动 docker ps2.查看是否安装nacos和redis docker ps -a3.启动nacos和redis docker start nacos docker start redis-6379 docker ps 二.使用SpringSession共享例子 这里的两个例子在我的一个博客有创建过程&#xff0c…

rtmp协议转websocketflv的去队列积压

websocket server的优点 websocket server的好处&#xff1a;WebSocket 服务器能够实现实时的数据推送&#xff0c;服务器可以主动向客户端发送数据 1 不需要客户端不断轮询。 2 不需要实现httpserver跨域。 在需要修改协议的时候比较灵活&#xff0c;我们发送数据的时候比较…

Linux云计算 |【第四阶段】RDBMS1-DAY3

主要内容&#xff1a; 子查询&#xff08;单行单列、多行单列、单行多列、多行多列&#xff09;、分页查询limit、联合查询union、插入语句、修改语句、删除语句 一、子查询 子查询就是指的在一个完整的查询语句之中&#xff0c;嵌套若干个不同功能的小查询&#xff0c;从而一…

安宝特案例 | 某知名日系汽车制造厂,借助AR实现智慧化转型

案例介绍 在全球制造业加速数字化的背景下&#xff0c;工厂的生产管理与设备维护效率愈发重要。 某知名日系汽车制造厂当前面临着设备的实时监控、故障维护&#xff0c;以及跨地域的管理协作等挑战&#xff0c;由于场地分散和突发状况的不可预知性&#xff0c;传统方式已无法…

大模型部署——NVIDIA NIM 和 LangChain 如何彻底改变 AI 集成和性能

DigiOps与人工智能 人工智能已经从一个未来主义的想法变成了改变全球行业的强大力量。人工智能驱动的解决方案正在改变医疗保健、金融、制造和零售等行业的企业运营方式。它们不仅提高了效率和准确性&#xff0c;还增强了决策能力。人工智能的价值不断增长&#xff0c;这从它处…

Html 转为 MarkDown

在 RAG 中,通常需要将 HTML 转为 Markdown,有很多第三方 API 都支持 HTML 的转换,本文使用一个代码文档的例子 https://www.joinquant.com/help/api/help#name:Stock,将聚宽 API 转为 Markdown。本文通过两种方式进行实现,使用收费和开源的解决方案。聚宽 API 格式转为 Ma…

【Linux】几种常见配置文件介绍

配置文件目录 linux 系统中有很多配置文件目录 /etc/systemd/system /lib/systemd/system /usr/lib/systemd/system 【结果就是这个目录配置文件是源头】 这三者有什么样的关系呢&#xff1f; 以下是网络上找的资料汇总&#xff0c;并加了一些操作验证。方便后期使用 介…

鸿蒙NEXT开发环境搭建(基于最新api12稳定版)

注意&#xff1a;博主有个鸿蒙专栏&#xff0c;里面从上到下有关于鸿蒙next的教学文档&#xff0c;大家感兴趣可以学习下 如果大家觉得博主文章写的好的话&#xff0c;可以点下关注&#xff0c;博主会一直更新鸿蒙next相关知识 专栏地址: https://blog.csdn.net/qq_56760790/…

Linux 进程的基本概念及描述

目录 0.前言 1. 什么是进程 1.1 进程的定义与特性 1.2 进程与线程的区别 2.描述进程 2.1 PCB (进程控制块) 2.2 task_struct 3.查看进程 3.1 查看进程信息 3.1.1 /proc 文件系统 3.1.2 ps 命令 3.1.2 top 和 htop 命令 3.2 获取进程标识符 3.2.1使用命令获取PID 3.2.2 使用C语言…

中原台球展,2025郑州台球展会,中国台球产业链发展大会

阳春三月&#xff0c;万物复苏&#xff0c;商机无限&#xff1b;品牌宣传正当季&#xff0c;产品招商正当时&#xff0c;新品发布好时期。抓住台球发展的这波财富机遇&#xff0c;借助壹肆柒郑州台球展这个超级平台&#xff0c;将品牌和产品快速打造成为覆盖全国市场的顶流。20…

数据治理003-数据域

数据仓库是面向主题&#xff08;数据综合、归类并进行分析利用的抽象&#xff09;的应用。 数据仓库模型设计除横向的分层外&#xff0c;通常也需要根据业务情况进行纵向划分数据域。数据域是联系较为紧密的数据主题的集合&#xff0c;通常是根据业务类别、数据来源、数据用途…

InternLM + LlamaIndex RAG 实践

llamaindexInternlm2 RAG实践 参考教程 正式介绍检索增强生成&#xff08;Retrieval Augmented Generation&#xff0c;RAG&#xff09;技术以前&#xff0c;大家不妨想想为什么会出现这样一个技术。 给模型注入新知识的方式&#xff0c;可以简单分为两种方式&#xff0c;一种…

线性代数(持续更新)

一.矩阵及其计算 1.矩阵的概念 矩阵就是一个数表 元素全是0&#xff0c;是零矩阵&#xff0c;用0来表示 当mn时&#xff0c;称为n阶矩阵&#xff08;方阵&#xff09; 只有一行的叫行矩阵&#xff0c;只有一列的叫列矩阵 只有对角线有元素的叫做对角矩阵&#xff0c;用dia…

(Linux驱动学习 - 4).Linux 下 DHT11 温湿度传感器驱动编写

DHT11的通信协议是单总线协议&#xff0c;可以用之前学习的pinctl和gpio子系统完成某IO引脚上数据的读与写。 一.在设备树下添加dht11的设备结点 1.流程图 2.设备树代码 &#xff08;1&#xff09;.在设备树的 iomuxc结点下添加 pinctl_dht11 &#xff08;2&#xff09;.在根…

HuggingChat macOS 版现已发布

Hugging Face 的开源聊天应用程序 Hugging Chat&#xff0c;现已推出适用于 macOS 的版本。 主要特点 Hugging Chat macOS 版本具有以下亮点: 强大的模型支持: 用户可以一键访问多个顶尖的开源大语言模型&#xff0c;包括 Qwen 2.5 72B、Command R、Phi 3.5、Mistral 12B 等等&…

WebRTC入门

主要参考资料&#xff1a; WebRTC 在 ESP32 系列硬件平台上的实现: https://www.bilibili.com/video/BV1AEHseWEda/?spm_id_from333.337.search-card.all.click&vd_sourcedd284033cd0c4d1f3f59a2cd40ae4ef9 火山 RTC豆包大模型&#xff0c;给用户体验装上银色子弹: https:…

【网络安全】Cookie与ID未强绑定导致账户接管

未经许可,不得转载。 文章目录 前言正文前言 DigiLocker 是一项在线服务,旨在为公民提供一个安全的数字平台,用于存储和访问重要的文档,如 Aadhaar 卡、PAN 卡和成绩单等。DigiLocker 通过多因素身份验证(MFA)来保护用户账户安全,通常包括 6 位数的安全 PIN 和一次性密…

【RabbitMQ】面试题

在本篇文章中&#xff0c;主要是介绍RabbitMQ一些常见的面试题。对于前几篇文章的代码&#xff0c;都已经在码云中给出&#xff0c;链接是mq-test: 学习RabbitMQ的一些简单案例 (gitee.com)&#xff0c;如果存在问题的话欢迎各位提出&#xff0c;望共同进步。 MQ的作用以及应用…

sentinel原理源码分析系列(一)-总述

背景 微服务是目前java主流开发架构&#xff0c;微服务架构技术栈有&#xff0c;服务注册中心&#xff0c;网关&#xff0c;熔断限流&#xff0c;服务同学&#xff0c;配置中心等组件&#xff0c;其中&#xff0c;熔断限流主要3个功能特性&#xff0c;限流&#xff0c;熔断&…