真正的Open AI ——LLaMA颠覆开源大模型

在这里插入图片描述

1. LLaMA 简介

LLaMA(Large Language Model Meta AI)是由Meta(原Facebook)推出的一个大型语言模型系列,旨在通过更小的模型规模和更少的计算资源,实现与其他主流语言模型(如GPT)相媲美的效果。LLaMA模型特别适合在资源受限的环境中进行训练和部署,因此在科研界和工业界都备受关注。而LLaMA模型的开源不仅推动了AI技术的普及和应用,还促进了全球AI生态的积极发展,为AI领域的未来创新提供了强大的动力和广阔的平台。

LLaMA:Open and Efficient Foundation Language Models

2. LLaMA模型架构

在这里插入图片描述

LLaMA的模型架构基于Transformer的解码器部分,采用Decoder-only结构。以下是对LLaMA模型架构及其技术细节的详细讲解:

Transformer基础
LLaMA模型基于Transformer架构,特别是它的解码器部分。它不包含编码器,而是单独使用解码器来生成文本。

前置归一化(Pre-normalization)
LLaMA模型在每个Transformer层之前进行归一化,而不是之后。这种预归一化(Pre-normalization)被认为可以提高训练的稳定性。

激活函数SwiGLU
LLaMA使用了SwiGLU(Swish-Gated Linear Unit)激活函数,它是一种门控激活机制,可以提高模型性能。

旋转位置编码(RoPE)
LLaMA没有使用传统的绝对或相对位置编码,而是采用了旋转位置编码(RoPE)。相比于传统的基于距离的位置编码,RoPE可以处理任意长度的序列,并且随着序列长度的增加,计算量不会显著增加。

分组查询注意力(GQA)
为了提高效率,LLaMA模型在某些版本中采用了分组查询注意力机制,减少了计算量和内存占用。

3. 不同版本的技术迭代

LLaMA 1
在这里插入图片描述

  • 使用BPE算法进行分词,词表大小为32k。
  • 基于Transformer的解码器架构。
  • 引入了RoPE位置编码。

LLaMA 2
在这里插入图片描述

  • 扩展了上下文长度至4k。
  • 70B参数版本引入了GQA。
  • 继续使用SwiGLU激活函数和RoPE位置编码。

LlaMA 2 - Chat
在这里插入图片描述
Chat版本的训练:这个过程从使用公开可用的在线资源对 LlaMA 2 进行预训练开始。在此之后,通过应用监督微调SFT来创建 LlaMA 2-Chat 的初始版本。随后,使用人工反馈强化学习 (RLHF) 方法迭代改进模型,特别是通过拒绝采样和近端策略优化 (PPO)。在整个 RLHF 阶段,迭代奖励建模数据的积累与模型增强并行,对于确保奖励模型保持在分配范围内至关重要。

不同于GPT对于监管内容采用后处理的方式,LLaMA在RLHF阶段就训练出了两个reward model——Safety Reward Model 和 Helpful Reward Model,分别在内容质量和内容安全性对大模型进行反馈强化。

LLaMA 3
在这里插入图片描述

  • 支持8K长文本。
  • 采用了128K词汇量的Tokenizer。
  • 8B和70B版本都采用了GQA。
  • 预训练数据量大幅增加,使用了超过15T token的语料。
  • 增加了代码数据和超过5%的非英语token,增强了多语言处理能力。

LLaMA模型系列展示了在Transformer架构上通过一系列改进,能够在保持性能的同时提高效率和多语言处理能力。随着模型规模的增加和训练数据的扩展,LLaMA 3在多个基准测试中取得了优异的成绩,并且开源策略为全球AI社区提供了强大的技术基础。

4. LLaMA 的开源家族

LLaMA(Large Language Model Meta AI)的开源对技术社区和整个AI生态系统带来了深远的影响。Meta通过开源LLaMA(尤其是LLaMA 2),不仅为研究人员和开发者提供了大规模语言模型的强大工具,还推动了开源AI生态的发展。

  • 推动开源AI社区的发展
    LLaMA的开源激励了开源AI社区的发展。大量开发者和贡献者开始基于LLaMA进行各种模型的优化和扩展,产生了丰富的衍生项目。
    由于LLaMA的开源性和优异性能,一经开源,迅速成为开源社区最受欢迎的大语言模型,各种基于LLaMA基础模型进行微调的“魔改版本”如雨后春笋肆意生长,现已形成丰富的生态系统,极大推动了LLM领域的研究进展。
    在这里插入图片描述

  • 与商用模型的对比与平衡
    LLaMA的开源尤其是允许商用的许可,给企业带来了巨大的影响。在开源LLaMA之前,许多企业只能依赖于OpenAI、Google等少数几家公司的商用语言模型服务,这往往意味着高昂的使用费用和一定的使用限制。LLaMA的开源则打破了这种局面,为企业提供可替代选择以及开源解决方案。

  • 增强了全球AI竞争力
    LLaMA的开源对全球AI技术的普及和竞争产生了深远影响。不同国家和地区的开发者可以在同一个技术基础上进行研发,打破了技术壁垒。开源不仅促进了技术共享,还帮助全球各地的研究人员在同一个起点上进行AI创新,缩小了AI技术的全球差距。

LLaMA的开源不仅推动了AI技术的创新和普及,也促进了社区协作、技术透明性和市场的公平竞争。它为学术界、工业界和个人开发者提供了一个强大而灵活的工具,推动了大语言模型技术的进一步发展和商业化应用。在AI发展的过程中,LLaMA开源起到了重要的引领作用,加速了大模型领域的变革。

5. LLaMA 的优势和发展

与OpenAI的GPT系列相比,LLaMA模型的显著特点在于其较小的参数规模以及更高的计算效率。GPT系列模型以其庞大的参数和强大的生成能力著称,但LLaMA则在资源有限的情况下表现优异。此外,LLaMA与BERT等预训练模型相比,具备更强的生成能力,更适合文本生成任务,而BERT更侧重于文本理解。

随着语言模型的不断演进,LLaMA系列模型仍有许多值得探索的方向。未来,LLaMA可能会进一步优化其架构,以更小的模型参数实现更强的性能。此外,LLaMA在跨模态学习(如图像与文本的联合建模)以及多语言处理方面也有广阔的研究空间。LLaMA还可能在更多的实际应用中展现出潜力,例如生成个性化内容、辅助人类创作等。

而于今年也就是2024年4月MetaAI也正式开源了LLaMA 3,紧接着又于几天前9月25日,正式发布LLaMA 3.2
在这里插入图片描述

  • 性能提升:LLaMA 3.2在性能上也有所提升,特别是视觉模型在图像识别等视觉理解任务上的表现,可以与业界领先的基础模型相媲美。此外,3B模型在指令遵从、总结、提示词重写、工具使用等任务上的表现也超过了其他同等规模的模型。

  • 多模态能力:最新版本的LLaMA 3.2引入了多模态能力,可以处理包括文本和图像在内的数据,这为计算机视觉、文档分析和增强现实工具等领域带来了新的可能性。

  • 设备端AI应用:LLaMA 3.2还推出了轻量级版本,适配了Arm处理器,使得手机、AR眼镜等边缘设备也能够运行强大的AI模型,为实时设备端AI应用创造了新的机会。

  • 负责任的开发和安全:Meta在开发LLaMA 3时,采用了系统级方法,确保模型的负责任开发和部署。进行了对抗性评估,并实施了安全缓解技术,以降低模型中的残余风险,并提供了安全工具,如Llama Guard 2和Code Shield,以保障模型的输出既安全又实用。

  • 开源和社区影响:LLaMA 3.2继续了Meta的开源策略,推动了全球AI社区的发展。开源使得开发者和研究人员可以自由地访问、使用和修改模型,促进了AI技术的普及和创新。此外,Meta还发布了Llama Stack Distribution,将多个API提供商集成在一起,方便模型调用各种工具或外部模型。

6. 结论

LLaMa系列模型凭借其高效的架构设计和出色的性能,在大型语言模型领域中占据了一席之地。随着研究的深入,LLaMa有望在未来的人工智能应用中发挥更加重要的作用,推动自然语言处理技术的进一步发展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/885440.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux-TCP重传

问题描述: 应用系统进行切换,包含业务流量切换(即TongWeb主备切换)和MYSQL数据库主备切换。首先进行流量切换,然后进行数据库主备切换。切换后发现备机TongWeb上有两批次慢请求,第一批慢请求响应时间在133…

完成UI界面的绘制

绘制UI 接上文,在Order90Canvas下创建Image子物体,图片资源ui_fish_lv1,设置锚点(CountdownPanelImg同理),命名为LvPanelImg,创建Text子物体,边框宽高各50, ,重名为LvT…

vue结合element-ui实现列表拖拽变化位置,点击拖动图标拖动整个列表元素,使用tsx格式编写

先来看下需要实现的效果 当鼠标放在左侧图标上时,可以拖动整个列表元素,调整顺序 思路介绍 使用draggable可以设置元素可拖动,然后分别设置三个事件处理函数,监听onDragstart、onDragover、onDragend三个事件 注意&#xff1a…

线性模型到神经网络

🚀 在初始神经网络那一节(链接如下:初始神经网络)的最后,我们通过加大考虑的天数使得我们最后得到的模型Loss最终停留在了0.32k,当我们在想让模型更加准确的时候,是做不到的,因为我们…

淘宝商品评论接口技术详解及代码示例

引言 淘宝商品评论接口是电商数据分析中不可或缺的一部分,它可以帮助商家和消费者更好地了解商品的质量、用户满意度等信息。本文将详细介绍如何使用淘宝商品评论接口,并提供相应的代码示例。 淘宝商品评论接口概述 淘宝商品评论接口主要用于获取商品…

【前端开发入门】前端开发环境配置

目录 引言一、Vscode编辑器安装1. 软件下载2. 软件安装3. 插件安装 二、Nodejs环境安装及版本控制1. 安装内容2. 使用nvm安装2.1 软件下载并安装2.2 nvm基本指令2.3 nvm下载过慢导致超时解决 三、git安装及配置1. 软件下载2. 软件安装3. 基础配置 四、总结 引言 本系列教程旨在…

【leetcode】122. 买卖股票的最佳时机 II

题目描述 给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。 在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。 返回 你能获得的 最大 利润 。…

【2025】基于Spring Boot的智慧农业小程序(源码+文档+调试+答疑)

文章目录 一、***-项目介绍二、***-开发环境三、***-系统展示四、***-代码展示五、***-项目文档展示六、***-项目总结 大家可以帮忙点赞、收藏、关注、评论啦 👇🏻 一、***-项目介绍 当今社会已经步入了科学技术进步和经济社会快速发展的新时期&#x…

基于SpringBoot的网上租赁服务:设计与实现

第2章 关键技术简介 2.1 Java技术 Java是一种非常常用的编程语言,在全球编程语言排行版上总是前三。在方兴未艾的计算机技术发展历程中,Java的身影无处不在,并且拥有旺盛的生命力。Java的跨平台能力十分强大,只需一次编译&#xf…

深度学习后门攻击分析与实现(二)

前言 在本系列的第一部分中,我们已经掌握了深度学习中的后门攻击的特点以及基础的攻击方式,现在我们在第二部分中首先来学习深度学习后门攻击在传统网络空间安全中的应用。然后再来分析与实现一些颇具特点的深度学习后门攻击方式。 深度学习与网络空间…

解决 Android WebView 无法加载 H5 页面常见问题的实用指南

目录 1. WebView 简介 2. 常见问题 3. 网络权限设置 4. 启用 JavaScript 5. DOM Storage 的重要性 6. 处理 HTTPS 问题 7. 设置 WebViewClient 8. 调试工具 9. 其他调试技巧 10. 结论 相关推荐 1. WebView 简介 Android WebView 是一种视图组件,使得 And…

LiveGBS流媒体平台GB/T28181功能-支持电子放大拉框放大直播视频拉框放大录像视频流拉框放大电子放大

LiveGBS流媒体平台GB/T28181功能-支持电子放大拉框放大直播视频拉框放大录像视频流拉框放大电子放大 1、直播播放2、录像播放3、搭建GB28181视频直播平台 1、直播播放 国标设备-》查看通道-》播放 ,左键单击可以拉取矩形框,放大选中的范围,释…

vue-element 表格组合查询 - fc-table-search 组件封装

开发目的 解决搜索form参数读取,配合异步请求,更新渲染数据;支持自适应高度,分页查询,搜索查询/重置。 额外提供formater类型:标签定义,金额,时间格式化,跨页勾选&#x…

uniapp/vue项目 import 导入文件时提示Module is not installed,‘@/views/xxx‘路径无法追踪

文章目录 背景解决方案1.IDE配置2.alias(别名)配置webpackvue-clivite 3.检查 jsconfig.json 或 tsconfig.json 写在最后 前往闪闪の小窝以获得更好的阅读和评论体验 背景 Vue3在我自学Vue的时候看过一点,实操过一点,但是太久没用…

基于php的酒店管理系

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏:Java精选实战项目…

动手学深度学习(李沐)PyTorch 第 3 章 线性神经网络

3.1 线性回归 线性回归是对n维输入的加权,外加偏差 线性回归可以看作是单层神经网络 回归问题中最常用的损失函数是平方误差函数。 平方误差可以定义为以下公式: 常数1/2不会带来本质的差别,但这样在形式上稍微简单一些 (因为当…

实时语音交互,打造更加智能便捷的应用

随着人工智能和自然语言处理技术的进步,用户对智能化和便捷化应用的需求不断增加。语音交互技术以其直观的语音指令,革新了传统的手动输入方式,简化了用户操作,让应用变得更加易用和高效。 通过语音交互,用户可以在不…

Android入门

下载Android studio,创建第一个项目 模板可以选择empty views Activity 在这个界面可以修改,使用语言,项目名字,存储路径以及适用版本 完成后,得到一个最初始的Android 项目,红色标记的两个文件&#xf…

七星创客:重塑商业模式认知

近期,一个普遍存在的疑问困扰着许多人:“商业模式是否仅仅等同于拉人头或传销活动?”这样的联想或许源于对商业模式概念的片面理解,使得一些人错误地将所有商业模式都笼罩在负面阴影之下。 商业模式,这一商业领域的核心…

(IDEA)spring项目导入本地jar包方法和项目打包时找不到引入本地jar包的问题解决方案

系列文章目录 文章目录 系列文章目录一、(IDEA)spring项目导入本地jar包方法和项目打包时找不到引入本地jar包的问题解决方案1.资料 一、(IDEA)spring项目导入本地jar包方法和项目打包时找不到引入本地jar包的问题解决方案 1.资料…