verilog实现FIR滤波系数生成(阶数,FIR滤波器类型及窗函数可调)

  在以往采用 FPGA 实现的 FIR 滤波功能,滤波器系数是通过 matlab 计算生成,然后作为固定参数导入到 verilog 程序中,这尽管简单,但灵活性不足。在某些需求下(例如捕获任意给定台站信号)需要随时修改滤波器的中心频率、带宽等信息,这要么通过上位机计算系数后更新到 FPGA 端(但并非所有设备都具备配套的上位机),要么直接在 FPGA 端计算并更新滤波器系数。本文对后者进行实现。

  计算 FIR 滤波器系数,主要包括两个方面的计算:窗函数计算,滤波器系数计算

窗函数生成

几种常用窗函数

  首先给出几种常用的窗函数的表达式,这里不对窗函数细节进行讨论:

  • 矩形窗

w ( n ) = 1.0 ,   n = 0 , 1 , . . . , N − 1 w(n) = 1.0,\ n=0,1,...,N-1 w(n)=1.0, n=0,1,...,N1

  • 三角窗

w ( n ) = 1 − ∣ 1 − 2 n N − 1 ∣ ,   n = 0 , 1 , . . . , N − 1 w(n)=1 - |1 - \frac{2n}{N - 1}|,\ n=0,1,...,N-1 w(n)=1∣1N12n, n=0,1,...,N1

  • 图基窗 Tukey

w ( n ) = { 0.5 − 0.5 cos ⁡ ( n π k + 1 ) ,   0 ≤ n ≤ k 1.0 ,   k < n ≤ N − k − 2 0.5 − 0.5 cos ⁡ ( π ( N − n − 1 ) k + 1 ) ,   N − k − 2 < n ≤ N − 1   ,  where  k = N − 2 10 w(n)= \left\{ \begin{aligned} 0.5 - 0.5\cos(\frac{n\pi}{k + 1}),&\ 0\le n\le k\\ 1.0,&\ k<n\le N-k-2\\ 0.5 - 0.5\cos(\frac{\pi(N - n - 1)}{k + 1}),&\ N-k-2<n\le N-1\ \end{aligned} \right. ,\ \text{where}\ k=\frac{N-2}{10} w(n)= 0.50.5cos(k+1),1.0,0.50.5cos(k+1π(Nn1)), 0nk k<nNk2 Nk2<nN1 , where k=10N2

  • 汉宁窗 Hann

w ( n ) = 0.5 × [ 1.0 − cos ⁡ ( 2 π n N − 1 ) ] ,   n = 0 , 1 , . . . , N − 1 w(n)=0.5 \times [1.0 - \cos(\frac{2\pi n}{N - 1})],\ n=0,1,...,N-1 w(n)=0.5×[1.0cos(N12πn)], n=0,1,...,N1

  • 汉明窗 Hamming

w ( n ) = 0.54 − 0.46 cos ⁡ ( 2 π n N − 1 ) ,   n = 0 , 1 , . . . , N − 1 w(n)=0.54 - 0.46\cos(\frac{2\pi n}{N - 1}),\ n=0,1,...,N-1 w(n)=0.540.46cos(N12πn), n=0,1,...,N1

  • 布莱克曼窗 Blackman

w ( n ) = 0.42 − 0.5 cos ⁡ ( 2 π n N − 1 ) + 0.08 cos ⁡ ( 4 π n N − 1 ) ,   n = 0 , 1 , . . . , N − 1 w(n)=0.42 - 0.5\cos(\frac{2\pi n}{N - 1}) + 0.08\cos(\frac{4\pi n}{N-1}),\ n=0,1,...,N-1 w(n)=0.420.5cos(N12πn)+0.08cos(N14πn), n=0,1,...,N1

verilog 实现

  可以观察到,Tukey、Hann、Hamming 和 Blackman 窗都用到了余弦函数,这可以用正余弦查找表实现,下面代码中会用到这一模块,可参考我这篇博文;窗函数生成器代码如下

/* 
 * file			: FIR_windows_generator.v
 * author		: 今朝无言
 * lab			: WHU-EIS-LMSWE
 * date			: 2024-09-26
 * version		: v1.0
 * description	: 生成指定阶数、指定类型的窗函数
 */
`default_nettype none
module FIR_windows_generator(
input	wire					clk,
input	wire					rst_n,

input	wire					en,			//上升沿触发窗口计算
input	wire			[3:0]	win_type,	//窗口类型,1:矩形窗,2:图基窗Tukey,3:三角窗,4:汉宁窗Hann,5:海明窗Hamming,6:布莱克曼窗Blackman,(7:凯塞窗kaiser, 暂未实现)
input	wire			[15:0]	n,			//窗口长度
input	wire			[15:0]	i,			//窗口索引值,0 ~ n-1
//input	wire	signed	[15:0]	beta,		//kaiser窗的参数beta,win_type=7时需要这个参数,其他情况可任意给值

output	wire					busy,		//指示模块是否计算完成
output	wire	signed	[15:0]	win
);

reg		signed	[15:0]	win_buf		= 16'sd256;		//8-8有符号定点数
reg		signed	[15:0]	win_buf_d0	= 16'sd256;
reg						busy_buf	= 1'b0;

assign	win		= win_buf_d0;
assign	busy	= busy_buf;

localparam	S_IDLE	= 4'h1;
localparam	S_CAL	= 4'h2;
localparam	S_END	= 4'h4;

reg		[3:0]	state	= S_IDLE;
reg		[3:0]	next_state;

always @(posedge clk) begin
	if(~rst_n) begin
		state	<= S_IDLE;
	end
	else begin
		state	<= next_state;
	end
end

always @(*) begin
	case(state)
	S_IDLE: begin
		if(en_pe) begin
			next_state	<= S_CAL;
		end
		else begin
			next_state	<= S_IDLE;
		end
	end
	S_CAL: begin
		case(win_type)
		4'd1: begin		//矩形窗
			next_state	<= S_END;
		end
		4'd2: begin		//图基窗
			if(cnt >= 4'd4) begin
				next_state	<= S_END;
			end
			else begin
				next_state	<= S_CAL;
			end
		end
		4'd3: begin		//三角窗
			if(cnt >= 4'd1) begin
				next_state	<= S_END;
			end
			else begin
				next_state	<= S_CAL;
			end
		end
		4'd4: begin		//汉宁窗
			if(cnt >= 4'd3) begin
				next_state	<= S_END;
			end
			else begin
				next_state	<= S_CAL;
			end
		end
		4'd5: begin		//海明窗
			if(cnt >= 4'd3) begin
				next_state	<= S_END;
			end
			else begin
				next_state	<= S_CAL;
			end
		end
		4'd6: begin		//布莱克曼窗
			if(cnt >= 4'd5) begin
				next_state	<= S_END;
			end
			else begin
				next_state	<= S_CAL;
			end
		end
		// 4'd7: begin		//凯塞窗		这个涉及到循环逼近bessel函数和sqrt计算,FPGA比较麻烦,就先不实现这个窗口类型了
		// 	next_state	<= S_END;
		// end
		default: begin
			next_state	<= S_END;
		end
		endcase
	end
	S_END: begin
		next_state	<= S_IDLE;
	end
	default: begin
		next_state	<= S_IDLE;
	end
	endcase
end

//en 边沿检测
wire	en_pe;
detect_sig_edge detect_sig_edge_inst(
	.clk		(clk),		//工作时钟
	.sig		(en),		//待检测信号

	.sig_pe		(en_pe),	//信号上升沿
	.sig_ne		(),			//下降沿
	.sig_de		()			//双边沿
);

//cnt 控制读取cosin结果,以计算窗口值
reg		[3:0]	cnt	= 4'd0;
always @(posedge clk) begin
	case(state)
	S_IDLE: begin
		cnt		<= 4'd0;
	end
	S_CAL: begin
		cnt		<= cnt + 1'b1;
	end
	default: begin
		cnt		<= 4'd0;
	end
	endcase
end

//win_buf
reg		signed	[31:0]	multi_tmp	= 32'sd0;
always @(posedge clk) begin
	if(~rst_n) begin
		win_buf		<= 16'sd256;	//1.0
	end
	else case(state)
	S_CAL: begin
		case(win_type)
		4'd1: begin								//矩形窗
			win_buf		<= 16'sd256;
		end
		4'd2: begin								//图基窗
			if(cnt == 4'd4) begin
				if(i <= k) begin
					win_buf		<= (16'sd256 - (cos_val_s >>> 7)) >>> 1;
				end
				else if(i > n - k - 4'd2) begin
					win_buf		<= (16'sd256 - (cos_val_s >>> 7)) >>> 1;
				end
				else begin
					win_buf		<= 16'sd256;
				end
			end
			else begin
				win_buf		<= win_buf;
			end
		end
		4'd3: begin								//三角窗
			if(cnt == 4'd0) begin
				multi_tmp	<= 16'sd512 * i / (n - 1'b1);
			end
			else if(cnt == 4'd1) begin
				win_buf 	<= 16'sd256 - abs(16'sd256 - multi_tmp[15:0]);
			end
			else begin
				win_buf		<= win_buf;
			end
		end
		4'd4: begin								//汉宁窗
			if(cnt == 4'd3) begin
				win_buf		<= 16'sd128 - (cos_val_s >>> 8);	//0.5 * (1.0 - cos(2 * i * pi / (n - 1)));
			end
			else begin
				win_buf		<= win_buf;
			end
		end
		4'd5: begin								//海明窗
			if(cnt == 4'd3) begin
				win_buf		<= 16'sd138 - ((16'sd118 * (cos_val_s >>> 7)) >>> 8);	//0.54 - 0.46 * cos(2 * i * pi / (n - 1));
			end
			else begin
				win_buf		<= win_buf;
			end
		end
		4'd6: begin								//布莱克曼窗
			if(cnt == 4'd3) begin
				win_buf		<= 16'sd108 - (cos_val_s >>> 8);
			end
			else if(cnt == 4'd5) begin
				win_buf		<= win_buf + ((16'sd82 * (cos_val_s >>> 7)) >>> 10);
			end
			else begin
				win_buf		<= win_buf;
			end
		end
		// 4'd7: begin							//凯塞窗
		// 	win_buf		<= 16'sd0;
		// end
		default: begin
			win_buf		<= 16'sd256;
		end
		endcase
	end
	default: begin
		win_buf		<= win_buf;
	end
	endcase
end

//busy_buf
always @(*) begin
	case(state)
	S_IDLE: begin
		busy_buf	<= 1'b0;
	end
	default: begin
		busy_buf	<= 1'b1;
	end
	endcase
end

//cos_phase
reg		[15:0]	k	= 16'd0;
always @(posedge clk) begin
	case(state)
	S_CAL: begin
		case(win_type)
		4'd1: begin								//矩形窗
			cos_phase	<= 16'd0;
		end
		4'd2: begin								//图基窗
			if(cnt == 4'd0) begin
				k 			<= (n - 2'd2) / 4'd10;
				cos_phase	<= cos_phase;
			end
			else if(cnt == 4'd1) begin
				k			<= k;

				if(i <= k) begin
					cos_phase	<= i * (16'd32768 / (k + 1'b1)) + 16'd16384;
				end
				else if(i > n - k - 2'd2) begin
					cos_phase	<= (n - i - 1'b1) * (16'd32768 / (k + 1'b1)) + 16'd16384;
				end
				else begin
					cos_phase	<= 16'd0;
				end
			end
			else begin
				cos_phase	<= cos_phase;
				k			<= k;
			end
		end
		4'd3: begin								//三角窗
			cos_phase	<= 16'd0;
		end
		4'd4: begin								//汉宁窗
			cos_phase	<= 2'd2 * i * (16'd32768 / (n - 1'b1)) + 16'd16384;
		end
		4'd5: begin								//海明窗
			cos_phase	<= 2'd2 * i * (16'd32768 / (n - 1'b1)) + 16'd16384;
		end
		4'd6: begin								//布莱克曼窗
			if(cnt == 4'd0) begin
				cos_phase	<= 2'd2 * i * (16'd32768 / (n - 1'b1)) + 16'd16384;
			end
			else if(cnt == 4'd2) begin
				cos_phase	<= 4'd4 * i * (16'd32768 / (n - 1'b1)) + 16'd16384;
			end
			else begin
				cos_phase	<= cos_phase;
			end
		end
		// 4'd7: begin							//凯塞窗
		// 	cos_phase	<= 16'd0;
		// end
		default: begin
			cos_phase	<= 16'd0;
		end
		endcase
	end
	default: begin
		cos_phase	<= cos_phase;
	end
	endcase
end

//sin_rom
reg		[15:0]	cos_phase	= 16'd0;
wire	[15:0]	cos_out;
sin_gen sin_gen_inst(
	.clk		(clk),

	.phase		(cos_phase),		//相位,0~65535对应[0~2pi)
	.sin_out	(cos_out)			//0~65535
);

wire	signed	[15:0]	cos_val_s;
assign	cos_val_s	= {~cos_out[15], cos_out[14:0]};

//win_buf_d0
always @(posedge clk) begin
	case(state)
	S_END: begin
		win_buf_d0	<= win_buf;
	end
	default: begin
		win_buf_d0	<= win_buf_d0;
	end
	endcase
end

//------------------func------------------------------
function signed [15:0] abs(input signed [15:0] a);
	begin
		abs = (a >= 16'sd0)? a : -a;
	end
endfunction

endmodule

测试

  testbench 如下

`timescale 1ns/100ps

module FIR_windows_generate_tb();

reg		clk_100M	= 1'b1;
always #5 begin
	clk_100M	<= ~clk_100M;
end

reg				rst_n 				= 1'b1;

reg						en;			//上升沿触发窗口计算
reg				[3:0]	win_type;	//窗口类型,1:矩形窗,2:图基窗,3:三角窗,4:汉宁窗,5:海明窗,6:布莱克曼窗
reg				[15:0]	n;			//滤波器阶数
reg				[15:0]	i;			//窗口索引值,0 ~ n-1

wire					busy;
wire	signed	[15:0]	win;

FIR_windows_generator FIR_windows_generator_inst(
	.clk			(clk_100M),
	.rst_n			(rst_n),

	.en				(en),			//上升沿触发窗口计算
	.win_type		(win_type),		//窗口类型,1:矩形窗,2:图基窗,3:三角窗,4:汉宁窗,5:海明窗,6:布莱克曼窗
	.n				(n),			//滤波器阶数
	.i				(i),			//窗口索引值,0 ~ n-1

	.busy			(busy),			//指示模块是否计算完成
	.win			(win)
);

//进行一组FIR_win的计算
task cal_win;
	input	[3:0]	WIN_TYPE;
	input	[15:0]	N;

	integer			k;
	begin
		n			= N;
		win_type	= WIN_TYPE;
		#10;

		for (k = 0; k < N; k = k + 1'b1) begin
			i	= k;
			en	= 1'b1;
			wait(busy);
			#10;
			en	= 1'b0;
			wait(~busy);
			#10;
		end
	end
endtask

initial begin
	rst_n		<= 1'b0;
	en			<= 1'b0;
	win_type	<= 1'b1;
	n			<= 16'd16;
	i			<= 16'd0;
	#100;
	rst_n		<= 1'b1;
	#100;

	cal_win(1, 64);		//矩形窗

	#100;
	cal_win(3, 64);		//三角窗

	#100;
	cal_win(2, 64);		//图基窗

	#100;
	cal_win(4, 64);		//汉宁窗

	#100;
	cal_win(5, 64);		//海明窗

	#100;
	cal_win(6, 64);		//布莱克曼窗

	#200;
	$stop;
end

endmodule

  仿真结果如下

在这里插入图片描述

滤波器系数计算

FIR 滤波器冲激响应

  这里给出理想低通 FIR 滤波器,理想高通 FIR 滤波器、理想带通 FIR 滤波器、理想带阻 FIR 滤波器的冲激响应函数表达式:

  • 低通

h L P ( n ) = sin ⁡ ( 2 π f c f s s ) π s ,  where  s = ∣ n − N 2 ∣ ,   n = 0 , 1 , . . . , N h_{LP}(n)=\frac{\sin(\frac{2\pi f_{c}}{f_s}s)}{\pi s},\ \text{where}\ s=|n-\frac{N}{2}|,\ n=0,1,...,N hLP(n)=πssin(fs2πfcs), where s=n2N, n=0,1,...,N

其中 f s f_s fs 为采样率, f c f_c fc 为截止频率。

  • 高通

h H P ( n ) = sin ⁡ ( π s ) − sin ⁡ ( 2 π f c f s s ) π s ,  where  s = ∣ n − N 2 ∣ ,   n = 0 , 1 , . . . , N h_{HP}(n)=\frac{\sin(\pi s)-\sin(\frac{2\pi f_{c}}{f_s}s)}{\pi s},\ \text{where}\ s=|n-\frac{N}{2}|,\ n=0,1,...,N hHP(n)=πssin(πs)sin(fs2πfcs), where s=n2N, n=0,1,...,N

  • 带通

h B P ( n ) = sin ⁡ ( 2 π f c 2 f s s ) − sin ⁡ ( 2 π f c 1 f s s ) π s ,  where  s = ∣ n − N 2 ∣ ,   n = 0 , 1 , . . . , N h_{BP}(n)=\frac{\sin(\frac{2\pi f_{c2}}{f_s}s)-\sin(\frac{2\pi f_{c1}}{f_s}s)}{\pi s},\ \text{where}\ s=|n-\frac{N}{2}|,\ n=0,1,...,N hBP(n)=πssin(fs2πfc2s)sin(fs2πfc1s), where s=n2N, n=0,1,...,N

其中 f c 1 f_{c1} fc1 为下截止频率, f c 2 f_{c2} fc2 为上截止频率。

  • 带阻

h B S ( n ) = sin ⁡ ( 2 π f c 1 f s s ) + sin ⁡ ( π s ) − sin ⁡ ( 2 π f c 2 f s s ) π s ,  where  s = ∣ n − N 2 ∣ ,   n = 0 , 1 , . . . , N h_{BS}(n)=\frac{\sin(\frac{2\pi f_{c1}}{f_s}s)+\sin(\pi s)-\sin(\frac{2\pi f_{c2}}{f_s}s)}{\pi s},\ \text{where}\ s=|n-\frac{N}{2}|,\ n=0,1,...,N hBS(n)=πssin(fs2πfc1s)+sin(πs)sin(fs2πfc2s), where s=n2N, n=0,1,...,N

  在实际设计中,FIR 滤波的数据要加窗以将无限冲激的 sinc 函数截断为有限长(即窗函数法 FIR 滤波器设计),因此将以上冲激响应与窗函数相乘即可。在计算以上冲激函数时,当阶数 N 为偶数时,则会在 n = N / 2 n=N/2 n=N/2 时出现除零的问题,此时利用洛必达法则进行计算即可。

verilog 实现

/* 
 * file			: FIR_firwin_generator.v
 * author		: 今朝无言
 * lab			: WHU-EIS-LMSWE
 * date			: 2024-09-26
 * version		: v1.0
 * description	: 生成指定阶数、指定类型的FIR滤波窗口
 */
`default_nettype none
module FIR_firwin_generator(
input	wire					clk,
input	wire					rst_n,

input	wire					en,			//上升沿触发窗口计算
input	wire			[1:0]	band_type,	//滤波器类型,0:低通LP,1:高通HP,2:带通BP,3:带阻BS
input	wire	signed	[15:0]	fs,			//采样率,注意fln,fhn均应小于fs/2
input	wire	signed	[15:0]	fln,		//滤波器下频点,LP,HP,BP,BS均会用到
input	wire	signed	[15:0]	fhn,		//滤波器上频点,BP,BS用到
input	wire			[3:0]	win_type,	//窗函数类型,1:矩形窗,2:图基窗Tukey,3:三角窗,4:汉宁窗Hann,5:海明窗Hamming,6:布莱克曼窗Blackman
input	wire	signed	[15:0]	n,			//滤波器阶数   注意,HP/BS的阶数应为偶数,奇数阶的系数不可靠
input	wire	signed	[15:0]	i,			//0~n,共n+1个值

output	wire					busy,		//指示模块是否计算完成
output	wire	signed	[15:0]	firwin
);

reg		signed	[31:0]	firwin_buf		= 32'sd256;
reg		signed	[15:0]	firwin_buf_d0	= 16'sd256;		//8-8有符号定点数
reg						busy_buf		= 1'b0;

assign	firwin	= firwin_buf_d0;
assign	busy	= busy_buf;

localparam	S_IDLE	= 4'h1;
localparam	S_CAL	= 4'h2;
localparam	S_END	= 4'h4;

reg		[3:0]	state	= S_IDLE;
reg		[3:0]	next_state;

always @(posedge clk) begin
	if(~rst_n) begin
		state	<= S_IDLE;
	end
	else begin
		state	<= next_state;
	end
end

always @(*) begin
	case(state)
	S_IDLE: begin
		if(en_pe) begin
			next_state	<= S_CAL;
		end
		else begin
			next_state	<= S_IDLE;
		end
	end
	S_CAL: begin
		if(cnt >= 4'd12) begin		//最迟在cnt=7可以读取窗函数值并计算firwin,随后本模块可计算firwin
			next_state	<= S_END;
		end
		else begin
			next_state	<= S_CAL;
		end
	end
	S_END: begin
		next_state	<= S_IDLE;
	end
	default: begin
		next_state	<= S_IDLE;
	end
	endcase
end

//firwin_buf
always @(posedge clk) begin
	case(state)
	S_CAL: begin
		case(band_type)
		2'd0: begin			//LP
			if(cnt == 4'd3) begin
				if((~n[0]) && (i_buf == n/4'sd2)) begin	//偶数阶滤波器,计算最中间的滤波器系数   即洛必达求=0时的值
					firwin_buf		<= (({fln, 16'b0} / fs) * 16'sd804) >>> 8;		//3.1415 = 804/256
				end
				else begin
					firwin_buf		<= sin_val_s / s_mlti2 * 4'sd2;
				end
			end
			else if(cnt == 4'd7) begin
				firwin_buf		<= (firwin_buf * win) >>> 16;
			end
			else begin
				firwin_buf		<= firwin_buf;
			end
		end
		2'd1: begin			//HP
			if(cnt == 4'd3) begin
				if((~n[0]) && (i_buf == n/4'sd2)) begin	//偶数阶滤波器,计算最中间的滤波器系数   即洛必达求=0时的值
					firwin_buf		<= ((32'sd32768 - {fln, 16'b0} / fs) * 16'sd804) >>> 8;
				end
				else begin
					firwin_buf		<= sin_val_s;
				end
			end
			else if(cnt == 4'd7) begin
				if((~n[0]) && (i_buf == n/4'sd2)) begin
					firwin_buf		<= firwin_buf;
				end
				else begin
					firwin_buf		<= (firwin_buf - sin_val_s) / s_mlti2 * 4'sd2;
				end
			end
			else if(cnt == 4'd8) begin
				firwin_buf		<= (firwin_buf * win) >>> 16;
			end
			else begin
				firwin_buf		<= firwin_buf;
			end
		end
		2'd2: begin			//BP
			if(cnt == 4'd3) begin
				if((~n[0]) && (i_buf == n/4'sd2)) begin	//偶数阶滤波器,计算最中间的滤波器系数   即洛必达求=0时的值
					firwin_buf		<= ((({fhn, 16'b0} - {fln, 16'b0}) / fs) * 16'sd804) >>> 8;
				end
				else begin
					firwin_buf		<= sin_val_s;
				end
			end
			else if(cnt == 4'd7) begin
				if((~n[0]) && (i_buf == n/4'sd2)) begin
					firwin_buf		<= firwin_buf;
				end
				else begin
					firwin_buf		<= (firwin_buf - sin_val_s) / s_mlti2 * 4'sd2;
				end
			end
			else if(cnt == 4'd8) begin
				firwin_buf		<= (firwin_buf * win) >>> 16;
			end
			else begin
				firwin_buf		<= firwin_buf;
			end
		end
		2'd3: begin			//BS
			if(cnt == 4'd3) begin
				if((~n[0]) && (i_buf == n/4'sd2)) begin	//偶数阶滤波器,计算最中间的滤波器系数   即洛必达求=0时的值
					firwin_buf		<= (({fln, 16'b0} / fs + 32'sd32768 - {fhn, 16'b0} / fs) * 16'sd804) >>> 8;
				end
				else begin
					firwin_buf		<= sin_val_s;
				end
			end
			else if(cnt == 4'd7) begin
				if((~n[0]) && (i_buf == n/4'sd2)) begin
					firwin_buf		<= firwin_buf;
				end
				else begin
					firwin_buf		<= firwin_buf + sin_val_s;
				end
			end
			else if(cnt == 4'd11) begin
				if((~n[0]) && (i_buf == n/4'sd2)) begin
					firwin_buf		<= firwin_buf;
				end
				else begin
					firwin_buf		<= (firwin_buf - sin_val_s) / s_mlti2 * 4'sd2;
				end
			end
			else if(cnt == 4'd12) begin
				firwin_buf		<= (firwin_buf * win) >>> 16;
			end
			else begin
				firwin_buf		<= firwin_buf;
			end
		end
		default: begin
			firwin_buf	<= firwin_buf;
		end
		endcase
	end
	default: begin
		firwin_buf		<= firwin_buf;
	end
	endcase
end

//i_buf
reg		signed	[15:0]	i_buf;
always @(posedge clk) begin
	if(i > (n >>> 1)) begin
		i_buf	<= n - i;	//滤波器是对称的,这里处理后利用i_buf计算滤波器系数
	end
	else begin
		i_buf	<= i;
	end
end

//sin_phase
reg		[31:0]	multi_tmp;
always @(posedge clk) begin
	case(state)
	S_CAL: begin
		sin_phase	<= multi_tmp[15:0];
	end
	default: begin
		sin_phase	<= sin_phase;
	end
	endcase
end

reg		signed	[15:0]	s_mlti2;
always @(*) begin
	s_mlti2	<= n - i_buf * 4'sd2;
end

always @(*) begin
	case(state)
	S_CAL: begin
		case(band_type)
		2'd0: begin			//LP
			multi_tmp	<= (({fln, 16'b0} / fs) * s_mlti2) >> 1;
		end
		2'd1: begin			//HP
			if(cnt <= 4'd3) begin
				multi_tmp	<= {s_mlti2, 14'b0};
			end
			else begin
				multi_tmp	<= (({fln, 16'b0} / fs) * s_mlti2) >> 1;
			end
		end
		2'd2: begin			//BP
			if(cnt <= 4'd3) begin
				multi_tmp	<= (({fhn, 16'b0} / fs) * s_mlti2) >> 1;
			end
			else begin
				multi_tmp	<= (({fln, 16'b0} / fs) * s_mlti2) >> 1;
			end
		end
		2'd3: begin			//BS
			if(cnt <= 4'd3) begin
				multi_tmp	<= (({fln, 16'b0} / fs) * s_mlti2) >> 1;
			end
			else if(cnt <= 4'd7) begin
				multi_tmp	<= {s_mlti2, 14'b0};
			end
			else begin
				multi_tmp	<= (({fhn, 16'b0} / fs) * s_mlti2) >> 1;
			end
		end
		default: begin
			multi_tmp	<= 32'd0;
		end
		endcase
	end
	default: begin
		multi_tmp	<= 32'd0;
	end
	endcase
end

//窗函数
wire	signed	[15:0]	win;
FIR_windows_generator FIR_windows_generator_inst(
	.clk		(clk),
	.rst_n		(rst_n),

	.en			(en),			//上升沿触发窗口计算
	.win_type	(win_type),		//窗口类型,1:矩形窗,2:图基窗Tukey,3:三角窗,4:汉宁窗Hann,5:海明窗Hamming,6:布莱克曼窗Blackman
	.n			(n + 1'b1),		//窗口长度,=滤波器阶数+1
	.i			(i),			//窗口索引值

	.busy		(),				//指示模块是否计算完成
	.win		(win)
);

//en 边沿检测
wire	en_pe;
detect_sig_edge detect_sig_edge_inst(
	.clk		(clk),		//工作时钟
	.sig		(en),		//待检测信号

	.sig_pe		(en_pe),	//信号上升沿
	.sig_ne		(),			//下降沿
	.sig_de		()			//双边沿
);

//cnt 控制计算流程
reg		[3:0]	cnt	= 4'd0;
always @(posedge clk) begin
	case(state)
	S_IDLE: begin
		cnt		<= 4'd0;
	end
	S_CAL: begin
		cnt		<= cnt + 1'b1;
	end
	default: begin
		cnt		<= 4'd0;
	end
	endcase
end

//busy_buf
always @(*) begin
	case(state)
	S_IDLE: begin
		busy_buf	<= 1'b0;
	end
	default: begin
		busy_buf	<= 1'b1;
	end
	endcase
end

//sin_rom
reg		[15:0]	sin_phase	= 16'd0;
wire	[15:0]	sin_out;
sin_gen sin_gen_inst(
	.clk		(clk),

	.phase		(sin_phase),		//相位,0~65535对应[0~2pi)
	.sin_out	(sin_out)			//0~65535
);

wire	signed	[15:0]	sin_val_s;
assign	sin_val_s	= {~sin_out[15], sin_out[14:0]};

//firwin_buf_d0
always @(posedge clk) begin
	case(state)
	S_END: begin
		firwin_buf_d0	<= firwin_buf[15:0];
	end
	default: begin
		firwin_buf_d0	<= firwin_buf_d0;
	end
	endcase
end

endmodule

测试

  testbench 如下

`timescale 1ns/100ps

module FIR_firwin_generate_tb();

reg		clk_100M	= 1'b1;
always #5 begin
	clk_100M	<= ~clk_100M;
end

reg						rst_n 	= 1'b1;

reg						en;			//上升沿触发窗口计算

reg				[1:0]	band_type;	//滤波器类型,0:低通LP,1:高通HP,2:带通BP,3:带阻BS
reg				[15:0]	fs;			//采样率,注意fln,fhn均应小于fs/2
reg				[15:0]	fln;		//滤波器下频点,LP,HP,BP,BS均会用到
reg				[15:0]	fhn;		//滤波器上频点,BP,BS用到
reg				[3:0]	win_type;	//窗口类型,1:矩形窗,2:图基窗,3:三角窗,4:汉宁窗,5:海明窗,6:布莱克曼窗
reg				[15:0]	n;			//滤波器阶数
reg				[15:0]	i;			//窗口索引值,0 ~ n

wire					busy;
wire	signed	[15:0]	firwin;

FIR_firwin_generator FIR_firwin_generator_inst(
	.clk			(clk_100M),
	.rst_n			(rst_n),

	.en				(en),			//上升沿触发窗口计算
	.band_type		(band_type),	//滤波器类型,0:低通LP,1:高通HP,2:带通BP,3:带阻BS
	.fs				(fs),			//采样率,注意fln,fhn均应小于fs/2
	.fln			(fln),			//滤波器下频点,LP,HP,BP,BS均会用到
	.fhn			(fhn),			//滤波器上频点,BP,BS用到
	.win_type		(win_type),		//窗函数类型,1:矩形窗,2:图基窗Tukey,3:三角窗,4:汉宁窗Hann,5:海明窗Hamming,6:布莱克曼窗Blackman
	.n				(n),			//滤波器阶数
	.i				(i),			//0~n,共n+1个值

	.busy			(busy),
	.firwin			(firwin)
);

//进行一组FIR_win的计算
task cal_firwin;
	input	[1:0]	BAND_TYPE;
	input	[15:0]	Fs;
	input	[15:0]	Fln;
	input	[15:0]	Fhn;
	input	[3:0]	WIN_TYPE;
	input	[15:0]	N;

	integer			k;
	begin
		band_type	= BAND_TYPE;
		fs			= Fs;
		fln			= Fln;
		fhn			= Fhn;
		win_type	= WIN_TYPE;
		n			= N;
		#10;

		for (k = 0; k <= N; k = k + 1'b1) begin
			i	= k;
			en	= 1'b1;
			wait(busy);
			#10;
			en	= 1'b0;
			wait(~busy);
			#10;
		end
	end
endtask

initial begin
	rst_n		<= 1'b0;
	en			<= 1'b0;
	band_type	<= 2'd0;
	fs			<= 16'd100;
	fln			<= 16'd10;
	fhn			<= 16'd60;
	win_type	<= 4'd1;
	n			<= 16'd64;
	i			<= 16'd0;
	#100;
	rst_n		<= 1'b1;
	#100;

	//可与matlab函数fir1(fir_N, Wn, band_type, win)的结果比对   注意其中的Wn是 [fln/f_ny, fhn/f_ny],其中f_ny=fs/2
	cal_firwin(2'd0, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd64);	//LP,矩形窗
	#200;

	cal_firwin(2'd0, 16'd1000, 16'd50, 16'd100, 4'd5, 16'd64);	//LP,海明窗
	#200;

	cal_firwin(2'd0, 16'd1000, 16'd50, 16'd100, 4'd6, 16'd64);	//LP,布莱克曼窗
	#200;

	cal_firwin(2'd0, 16'd1000, 16'd50, 16'd100, 4'd6, 16'd63);	//LP,布莱克曼窗
	#200;

	cal_firwin(2'd1, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd64);	//HP,矩形窗
	#200;

	cal_firwin(2'd1, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd63);	//HP,矩形窗	HP的阶数应为偶数,否则系数不可靠,matlab fir1也是只能生成偶数阶的HP
	#200;

	cal_firwin(2'd2, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd64);	//BP,矩形窗
	#200;

	cal_firwin(2'd2, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd63);	//BP,矩形窗
	#200;

	cal_firwin(2'd2, 16'd1000, 16'd50, 16'd100, 4'd5, 16'd63);	//BP,海明窗
	#200;

	cal_firwin(2'd3, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd64);	//BS,矩形窗
	#200;

	cal_firwin(2'd3, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd63);	//BS,矩形窗	BS的阶数也应为偶数
	#200;

	cal_firwin(2'd3, 16'd1000, 16'd50, 16'd100, 4'd5, 16'd64);	//BS,海明窗
	#200;

	#200;
	$stop;
end

endmodule

  仿真结果如下

在这里插入图片描述

读者可与 Matlab 的 fir1 函数结果进行比对。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/885162.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

FPGA学习(1)-mux2,2选1多路器

目录 1 开发板配套资料 1.1学习网址和资料网址 2.创建工程文件 2.1创建过程 2.2写程序及仿真测试 2.2.1 写程序生成电路 2.2.2仿真 2.2.3 生成执行文件并烧录 3.实验现象 买的小梅哥店铺的开发板&#xff1a;xc7z020clg400 看的小梅哥的视频&#xff1a;03C _基于ZYN…

VUE 开发——AJAX学习(三)

一、async函数和await async和await关键字让我们可以用一种更简洁的方式写出基于Promise的异步行为&#xff0c;而无需刻意地链式调用Promise async写在函数声明的前面&#xff1b;在async函数内&#xff0c;使用await关键字&#xff0c;获取Promise对象“成功状态”结果值 &…

身份证号、定位信息等个人信息敏感性判定解析

关于身份证号号码以及精确定位信息是否是敏感个人信息的疑问一直以来不少合规安全从业者有疑惑&#xff0c;本文来自于《数安标准强基助力计划 》作者为指南和标准的起草者&#xff0c;其观点具有一定的权威性&#xff0c;一下为内容摘要&#xff0c;以供大家学习和解惑&#x…

Qt多线程操作sqlite数据库

问题 就是为了多线程操作sqlite数据库,为什么,因为数据库是耗时的操作,一条数据的插入,差不多200ms,如果是数据插入多了,界面会有明显的卡顿,因此必须,多线程操作数据库。 问题是这样的: 插入数据之后,接着更新界面;然而,插入数据是比较耗时的操作,尤其插入数据…

图解C#高级教程(一):委托

什么是委托 可以认为委托是持有一个或多个方法的对象。但它与对象不同&#xff0c;因为委托可以被执行。当执行委托时&#xff0c;委托会执行它所“持有”的方法。先看一个完整的使用示例。 // See https://aka.ms/new-console-template for more informationdelegate void M…

【Git原理与使用】Git初识基本操作

Git初识&&基本操作 1.初识Git2.Git安装3.Git基本操作3.1创建Git本地仓库3.2配置Git3.3认识工作区、暂存区、版本库3.4添加文件3.5修改文件3.6版本回退3.7撤销修改3.8删除文件 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f…

Vscode超好看的渐变主题插件

样式效果&#xff1a; 插件使用方法&#xff1a; 然后重启&#xff0c;之后会显示vccode损坏&#xff0c;不用理会&#xff0c;因为这个插件是更改了应用内部代码&#xff0c;直接不再显示即可。

基于nodejs+vue的游戏陪玩系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏&#xff1a;Java精选实战项目…

银河麒麟服务器:更新软件源

银河麒麟服务器&#xff1a;更新软件源 1、使用场景2、操作步骤3、注意事项 &#x1f490;The Begin&#x1f490;点点关注&#xff0c;收藏不迷路&#x1f490; 1、使用场景 当需要安装最新软件或修改软件源配置后&#xff0c;需更新软件源以获取最新软件包信息。 2、操作步…

京东PMO段敬受邀为第四届中国项目经理大会演讲嘉宾

全国项目经理专业人士年度盛会 京东集团技术委员会PMO组研发项目经理段敬女士受邀为PMO评论主办的全国项目经理专业人士年度盛会——2024第四届中国项目经理大会演讲嘉宾&#xff0c;演讲议题为“项目经理如何组织高效的项目会议”。大会将于10月26-27日在北京举办&#xff0c;…

亚信安全天穹5分钟勒索体检 免费试用今起上线

对于勒索攻击的认知 你是否还停留在“2.0时代”&#xff1f; 勒索攻击无疑是企业面临的最大威胁&#xff0c;2024年上半年&#xff0c;勒索组织数量同步增长超过50%&#xff0c;勒索攻击数量也持续攀升&#xff0c;平均勒索赎金突破520万美元。 当前&#xff0c;勒索攻击治理…

java学习-idea编辑器基础使用设置

首先打开电脑中的idea编辑器&#xff0c;点击头部&#xff1a;File按钮 → Settings… 打开设置界面&#xff1b; 设置idea的主题 设置idea代码注释的字体颜色 设置idea编辑器的字体和字体大小 设置idea通过提示回车自动导入包 设置idea输入忽略大小写进行提示

【Hadoop】【vim编辑器】【~/.bashrc 文件】如何编辑

1. 进入 vim 编辑器 在终端中输入以下命令&#xff1a; vim ~/.bashrc 2. 进入插入模式 打开文件后&#xff0c;你将处于普通模式。在普通模式下&#xff0c;你不能直接编辑文本。 要进入插入模式&#xff0c;请按下 i 键。这时&#xff0c;你应该会看到屏幕底部出现 -- 插…

fish-speech语音大模型本地部署

文章目录 fish-speech模型下载编译部署 小结 fish-speech模型 先说下fish-speech模型吧&#xff0c;可以先看下官网。如下&#xff1a; 这就是一个模型&#xff0c;可以根据一个样例声音&#xff0c;构建出自己需要的声音。其实&#xff0c;这个还是有很多用途的&#xff1b;…

多模态人像编辑:PortraitGen将2D肖像视频提升到4D 高斯场

这篇文章《Portrait Video Editing Empowered by Multimodal Generative Priors》&#xff0c;作者是来自中国科学技术大学。文章介绍了一种名为PortraitGen的肖像视频编辑方法&#xff0c;它使用多模态生成先验来实现一致性和富有表现力的风格化编辑。 文章地址&#xff1a;P…

匿名管道 Linux

管道 首先自己要用用户层缓冲区&#xff0c;还得把用户层缓冲区拷贝到管道里&#xff0c;&#xff08;从键盘里输入数据到用户层缓冲区里面&#xff09;&#xff0c;然后用户层缓冲区通过系统调用&#xff08;write&#xff09;写到管道里&#xff0c;然后再通过read系统调用&…

[Docker学习笔记]利用Dockerfile创建镜像

Dockerfile 指令 指令作用from继承基础镜像maintainer镜像制作者信息(可缺省)run用来执行shell命令expose暴露端口号cmd启动容器默认执行的命令entrypoint启动容器真正执行的命令volume创建挂载点env配置环境变量add复制文件到容器copy复制文件到容器workdir设置容器的工作目录…

APISIX 联动雷池 WAF 实现 Web 安全防护

Apache APISIX 是一个动态、实时、高性能的云原生 API 网关&#xff0c;提供了负载均衡、动态上游、灰度发布、服务熔断、身份认证、可观测性等丰富的流量管理功能。 雷池是由长亭科技开发的 WAF 系统&#xff0c;提供对 HTTP 请求的安全请求&#xff0c;提供完整的 API 管理和…

VUE 整合 ECharts

一、vue 引入 ECharts依赖 npm install echarts --save 二、创建盒子 <div ref"chars" style"height: 500px;width:800px;"></div> 解释说明 ref"chars" 是 Vue.js 中一个非常有用的特性&#xff0c;用于给 DOM 元素或组件实例…

二值图像的面积求取的两种方法及MATLAB实现

一、引言 面积在数字图像处理中经常用到&#xff0c;在MATLAB中&#xff0c;计算二值图像的面积通常可以通过两种主要方法实现&#xff1a;遍历法和直接利用bwarea函数。下面将分别介绍这两种方法的原理和相应的MATLAB代码示例。 二、遍历法计算二值图像面积的原理和MATLAB代码…