WebRTC中的维纳滤波器实现详解:基于决策导向的SNR估计

目录

    • 1. 维纳滤波器的基本原理
    • 2. WebRTC中的维纳滤波器实现
    • 3. 代码逐步剖析
    • 4. 总结

在WebRTC的噪声抑制模块中,维纳滤波器(Wiener Filter)是一种非常常见且重要的滤波器,用于提高语音信号的清晰度并抑制背景噪声。本文将详细解释维纳滤波器在WebRTC中的实现逻辑,并结合代码逐步剖析如何利用基于决策导向的SNR估计来动态调整维纳滤波器的增益。

1. 维纳滤波器的基本原理

维纳滤波器的目标是将噪声从信号中分离出来,保留语音信号的主要成分。滤波器的设计基于信号和噪声的功率谱密度(PSD),并且它的增益可以表示为:
在这里插入图片描述
其中:S(f) 是信号的功率谱密度。N(f) 是噪声的功率谱密度。
在语音增强场景中,我们通常无法直接得到精确的信号和噪声功率谱密度。为了动态调整滤波器,通常采用估计的信噪比(SNR)来计算滤波器增益:
在这里插入图片描述
此处,overdrive factor 是用于平滑的因子,避免滤波器过度削弱信号或过度增强噪声。

2. WebRTC中的维纳滤波器实现

在WebRTC的噪声抑制模块中,维纳滤波器的实现是通过基于**决策导向(Decision-Directed, DD)**的信噪比(SNR)估计算法来完成的。以下是相关代码中 ComputeDdBasedWienerFilter 函数的具体实现:

static void ComputeDdBasedWienerFilter(const NoiseSuppressionC *self,
	const float *magn,
	float *theFilter) {
	size_t i;
	float snrPrior, previousEstimateStsa, currentEstimateStsa;

	// 遍历所有频率点
	for (i = 0; i < self->magnLen; i++) {
		// 上一帧的估计:基于之前帧和增益滤波器。
		// 这里使用了平滑处理后的信号与噪声之比,epsilon 用于防止除以零。
		previousEstimateStsa = self->magnPrevProcess[i] * self->smooth[i] / (self->noisePrev[i] + epsilon);

		// 后验和先验信噪比。
		currentEstimateStsa = 0.f;
		// 如果当前幅度大于噪声水平,则计算当前估计的STSA(短时谱幅比)
		if (magn[i] > self->noise[i]) {
			currentEstimateStsa = (magn[i] - self->noise[i]) / (self->noise[i] + epsilon);
		}
		// DD估计是两个项的和:当前估计和之前的估计。
		// 决策导向更新先验SNR。
		snrPrior = DD_PR_SNR * previousEstimateStsa +
			(1.f - DD_PR_SNR) * currentEstimateStsa;
		// 计算增益滤波器,这是一个基于估计SNR的维纳滤波。
		theFilter[i] = snrPrior / (self->overdrive + snrPrior);
	}  // 结束频率的循环。
}

3. 代码逐步剖析

3.1 输入参数解析
magn:输入的信号幅度谱估计,即通过FFT变换后得到的频率域信号幅度。
theFilter:输出的维纳滤波器的增益系数,它是对不同频率的增益因子,用于抑制噪声。
3.2 SNR估计
在计算维纳滤波器时,首先需要对当前的信噪比(SNR)进行估计。这里的信噪比分为两部分:

previousEstimateStsa:上一帧的短时谱幅比(STSA),是通过上一帧的幅度和噪声谱进行估计的,公式如下:
在这里插入图片描述
其中,smooth[i] 是上一个频点的滤波器增益,magnPrevProcess[i] 是上一个频点的信号幅度,noisePrev[i] 是上一个频点的噪声幅度,epsilon 是一个很小的数,用来避免除零错误。

currentEstimateStsa:当前帧的短时谱幅比,计算方法是如果当前信号幅度 magn[i] 大于噪声水平 noise[i],则当前信号与噪声之比计算为:
在这里插入图片描述
3.3 决策导向的SNR更新
在维纳滤波器中,信噪比的估计可以基于当前帧的信号和上一帧的信号共同决定,这就是决策导向的思想。公式如下:
在这里插入图片描述
其中,α 是一个平滑因子,这里使用 DD_PR_SNR,在WebRTC中通常取值为0.98。这意味着先验信噪比的估计主要依赖于之前的帧,但也会根据当前帧的计算结果做出部分调整。

3.4 维纳滤波器的增益计算
一旦有了先验信噪比 SNR prior,我们就可以计算维纳滤波器的增益:
在这里插入图片描述
其中,overdrive factor 是一个控制参数,用于增强滤波器的强度,在WebRTC中通常取一个大于1的值。

3.5 应用到每个频率点
维纳滤波器的增益是基于每个频率点计算的,因此函数会遍历频率点并计算增益,将其存储到 theFilter 数组中。这个增益将用于在时域中调整信号的幅度,抑制噪声。

4. 总结

维纳滤波器是语音增强领域中常用的工具,它能够根据信噪比动态地调整增益,从而在保留语音信号的同时抑制背景噪声。在WebRTC的噪声抑制模块中,通过决策导向的SNR估计方法,维纳滤波器得以实时地调整其频率响应。具体来说,它结合了上一帧的估计和当前帧的计算,利用平滑因子来平衡滤波器的稳定性与适应性。

这一实现方法不仅能够有效提高语音的可懂度,还能确保处理后的音质不受到过度滤波的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/884370.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

erlang学习:Linux命令学习6

for循环学习 打印九九乘法表 for i in {1..9};do %%取1-9for j in $(seq 1 $i);do %%取1-iecho -n "$j*$i$((i*j)) " %%进行九九乘法表打印doneecho done尝试了很多次报错是因为后面的换行符不对&#xff0c;window系统中的换行符与linux对不上&#xff0c;因…

AI芯片WT2605C赋能厨房家电,在线对话操控,引领智能烹饪新体验:尽享高效便捷生活

在智能家居的蓬勃发展中&#xff0c;智能厨电作为连接科技与生活的桥梁&#xff0c;正逐步渗透到每一个现代家庭的厨房中。蒸烤箱作为智能厨电的代表&#xff0c;以其丰富的功能和高效的性能&#xff0c;满足了人们对美食的多样化追求。然而&#xff0c;面对众多复杂的操作功能…

OpenHarmony(鸿蒙南向)——平台驱动开发【MIPI DSI】

往期知识点记录&#xff1a; 鸿蒙&#xff08;HarmonyOS&#xff09;应用层开发&#xff08;北向&#xff09;知识点汇总 鸿蒙&#xff08;OpenHarmony&#xff09;南向开发保姆级知识点汇总~ 持续更新中…… 概述 功能简介 DSI&#xff08;Display Serial Interface&#x…

小阿轩yx-案例:代码管理系统简介与部署

小阿轩yx-案例&#xff1a;代码管理系统简介与部署 前言 开发一个项目时&#xff0c;如果只有几十行代码或几百行代码时维护还算简单&#xff0c;但是代码数量达到一定程度或两三个人共同开发一个项目时&#xff0c;就很容易会出现代码混乱、冲突、排错难等问题。代码编写完成…

【软件测试】如何设计测试用例? 设计测试用例常用的方法.

目录 一.什么是测试用例?二.总体设计测试用例的万能公式.2.1 功能性能界面兼容易用安全2.2 弱网测试2.3 安装卸载测试. 三. 常用设计具体测试用例的方法3.1 等价类3.2 边界值3.3 正交法3.3.1 正交表3.3.2 如何设计正交表,并根据正交表编写测试用例 3.4 判定表法3.4.1 根据判定…

828华为云征文 | 解锁高效项目管理,Zentao在华为云Flexusx容器化部署与应用指南

前言 在当今快速迭代的商业环境中&#xff0c;高效且灵活的项目管理成为企业竞争力的关键。华为云Flexusx实例&#xff0c;以其灵活的vCPU内存配比、热变配功能及按需计费模式&#xff0c;为项目管理软件如Zentao的部署提供了理想平台。Flexusx实例采用按需计费的灵活定价模式&…

Ansible流程控制-条件_循环_错误处理_包含导入_块异常处理

文章目录 Ansible流程控制介绍1. 条件判断2. 循环3. 循环控制4. 错误处理5. 包含和导入6. 块和异常处理7. 角色的流程控制*include_tasks、import_tasks_include之间的区别 条件语句再细说且、或、非、是模糊条件when指令的详细使用方法 循环语句再细说如何使用使用item变量结合…

甄选范文“论软件需求管理”,软考高级论文,系统架构设计师论文

论文真题 软件需求管理是一个对系统需求变更了解和控制的过程。需求管理过程与需求开发过程相互关联,初始需求导出的同时就要形成需求管理规划,一旦启动了软件开发过程,需求管理活动就紧密相伴。 需求管理过程中主要包含变更控制、版本控制、需求跟踪和需求状态跟踪等4项活…

???Ansible-使用roles

文章目录 一、Ansible的内置的或官方推荐创建的目录及文件介绍roles目录解释1、roles/自定义角色名目录下2、roles/自定义角色名目录/tasks目录下3、roles/自定义角色名目录/handlers目录下4、roles/自定义角色名目录/templates目录下5、roles/自定义项目名目录/files目录下6、…

SSM超市售卖管理系统-计算机毕业设计源码23976

目 录 摘要 Abstract 1 绪论 1.1研究的背景和意义 1.2研究内容 1.3论文结构与章节安排 2 开发技术介绍 2.1 SSM框架 2.2 MySQL数据库 3 超市售卖管理系统系统分析 3.1 可行性分析 3.2 系统流程分析 3.2.1 数据流程 3.3.2 业务流程 3.3 系统功能分析 3.3.1 功…

港科夜闻 | 香港科大颁授荣誉大学院士予五位杰出人士

关注并星标 每周阅读港科夜闻 建立新视野 开启新思维 1、香港科大颁授荣誉大学院士予五位杰出人士。香港科大9月24日向五位杰出人士颁授荣誉大学院士&#xff0c;他们分别为包弼德教授、简吴秋玉女士、高秉强教授、吴永顺先生及容永祺博士(按姓氏英文字母排序)。荣誉大学院士颁…

BUG——IMX6ULL编译正点原子Linux内核报错

最初编译的是正点原子改过的Linux内核&#xff0c;可能是版本问题&#xff0c;一直报错&#xff0c;无法成功编译。然后换成NXP官方Linux内核6.6版本&#xff0c;初始编译虽然也报各种错&#xff0c;但都是缺少库或相关工具&#xff0c;全部安装后就可以成功编译出镜像了&#…

WiFi无线连接管理安卓设备工具:WiFiADB

介绍 WiFi ADB 使您能够通过 WiFi TCP/IP 连接直接在设备上轻松调试和测试 Android 应用&#xff0c;无需使用 USB 数据线。在启用 WiFi 上的 ADB 后&#xff0c;打开控制台将电脑连接到设备。 手机和电脑在同一个WiFi然后电脑上运行adb connect x.x.x.x:x命令即可 下载 谷…

IoT网关的主要功能有哪些?天拓四方

在数字化浪潮席卷全球的今天&#xff0c;物联网&#xff08;IoT&#xff09;技术凭借其独特的优势&#xff0c;逐渐在各个领域展现出强大的生命力。而IoT网关&#xff0c;作为连接物理世界与数字世界的桥梁&#xff0c;其在物联网体系中的作用愈发凸显。 一、数据聚合与预处理…

leetcode每日一题day15(24.9.25)——公司命名

思路&#xff1a;首先如果没有相同的后缀&#xff0c;则无论只要不是相同的首字母交换都不会出现重复情况&#xff0c;如果有重复后缀&#xff0c;则还需多增加个不能和&#xff0c;首字符与另一相同后缀字串的首字符相同的字串交换。 主要矛盾已经明确&#xff0c;则可对矛盾…

Redis集群的两种方式

1.Redis集群 1.1 搭建主从集群 单节点Redis的并发能力是有上限的&#xff0c;要进一步提高Redis的并发能力&#xff0c;就需要搭建主从集群&#xff0c;实现读写的分离。一般情况下&#xff0c;主节点负责写操作&#xff0c;从节点负责读操作。而从节点如何得知数据呢&#xff…

SpringBoot文档管理系统:架构与功能

第2章相关技术 2.1 Java技术介绍 Java语言擅长开发互联网类应用和企业级应用&#xff0c;现在已经相当的成熟&#xff0c;而且也是目前使用最多的编程语言之一。Java语言具有很好的面向对象性&#xff0c;可以符合人的思维模式进行设计&#xff0c;封装是将对象的属性和方法尽可…

【4.6】图搜索算法-DFS和BFS解合并二叉树

一、题目 给定两个二叉树&#xff0c;想象当你将它们中的一个覆盖到另一个上时&#xff0c;两个二叉树的一些节点便会重叠。你需要将他们合并为一个新的二叉树。合并的规则是 如果两个节点重叠&#xff0c;那么将他们的 值相加作为节点合并后的新值&#xff0c;否则不为 NUL L…

DERT目标检测源码流程图main.py的执行

DERT目标检测源码流程图main.py的执行 官网预测脚本 补充官网提供的预测部分的代码信息。 from PIL import Image import requests import matplotlib.pyplot as pltimport torch from torch import nn from torchvision.models import resnet50 import torchvision.transform…

网页设计html心得

一&#xff0c;认识网页 说到网页&#xff0c;其实大家并不陌生 1.1网页究竟是什么&#xff1f; 网页主要由文字、图像和超链接等元素构成。当然&#xff0c;除了这些元素&#xff0c;网页中还可以包含音频、视频以及Flash等。 1.2网页是如何形成的呢&#xff1f; 1.特殊的…