Type-C接口相关知识:【总结大全】

Type-c现在非常通用了,所以了解Type-c也变得十分有必要了,还是秉承了解就要了解清楚的原则,我们深入的看看Type-c接口。

Type-c主要是取代上一代Micro usb接口,那么Type-c有什么优点呢?

  1. 正反可插,使用时不需要区分正反方向
  2. 可以传输更高的速率,在支持 USB3.1 功能的接口中可以传输 4K 级别的视频
  3. 可以支持更大的电流,满足 3A、5A 的充电功能,支持反向充电
  4. 安全性更高,结构更加精细可靠

1: Typc-C定义:(12Pin双排,24引脚

Pin名称功能描述Pin名称功能描述
A1GND接地B12GND接地
A2SSTXP1superspeed差分信号#1 Tx+B11SSRXP1superspeed差分信号#1 Rx+
A3SSTXN1superspeed差分信号#1 Tx-B10SSRXN1superspeed差分信号#1 Rx-
A4VBUS总线电源B9VBUS总线电源
A5CC1configuration channel1B8SBU2Sideband use (sbu)
A6DP1USB2.0差分信号1,B7DN2USB2.0差分信号2,
A7DN1USB2.0差分信号1,B6DP2USB2.0差分信号2,
A8SBU1Sideband use (sbu)B5CC2configuration channel2
A9VBUS总线电源B4VBUS总线电源
A10SSRXN2superspeed差分信号#2 Rx-B3SSTXN2superspeed差分信号#2 Tx-
A11SSRXP2superspeed差分信号#2 Rx+B2SSTXP2superspeed差分信号#2 Tx+
A12GND接地B1GND接地

 2:CC1和CC2的作用

首先说几个专业名词:

1:DFP(Downstream Facing Port):下行端口,可以理解为Host,DFP提供VBUS,可以提供数据。在协议规范中DFP特指数据的下行传输,笼统意义上指的是数据下行和对外提供电源的设备。典型的DFP设备是电源适配器。只能做Source

2:UFP(Upstream Facing Port):上行端口,可以理解为Device,UFP从VBUS中取电,并可提供数据。典型设备是U盘,移动硬盘。只能做sink端。

3:DRP (DualRolePort):双角色端口,DRP既可以做DFP(Host),也可以做UFP(Device),也可以在DFP与UFP间动态切换。典型的DRP设备是笔记本电脑,手机。

 a:插入检测(host CC1 检测到下拉,相反从设备可以在CC1检测到上拉

在DFP与UFP未连接之前,VBUS是没有输出的。当DFP与UFP连接后,CC pin连接。DFP上的CC pin会检测到来自UFP的下拉。此时代表了DFP与UFP连接成功。随后,DFP会打开VBUS上的FET,输出VBUS给UFP。

b:识别正反插

这里我们以手机为例。手机属于DRP,既可以做DFP,又可以做UFP。手机因CC logic的存在,当未连接Type C时, CC引脚是不断的循环被上拉与下拉的。此时如果用示波器测量机器的CC Pin的信号其实是方波。

手机充电时:对手机而言, 作为UFP时,内部的CC引脚直接通过Rd为下拉至地,充电器,作为DFP,内部的两个CC引脚是被上拉到VBUS

当充电器与手机连接,因手机内部CC引脚的下拉进而导致充电器的CC1 Pin被拉低时,此时代表UFP是向上插入。反之,如果充电器检测到CC2 pin被下拉时,则UFP就是向下插入。

(左:DFP,右:UFP)

如上图,CC1被拉低,则代表正面插入,相反CC2被拉低,则代表反面插入

c:了解VBUS配置方式:电流模式与USB PD

下图展示了每个USB标准所能提供的供电能力。纯type C端口可提供5V/3A的供电能力。如果配合PD协议,供电能力可以达到更高(USB pd协议通过CC引脚通信)。

Type c 存在1.5A与3A两种电流模式。其主要取决于DFP的输出能力DFP通过CC引脚上的电压告知UFP供电能力。UFP的下拉电阻始终为5.1K保持不变,而DFP可通过其CC上的上拉电阻Rp或者电流源Ip来产生电压。

 Type-C spec定义了DFP在不同模式下,在CC pin要供多大的电流或是要用多大的上拉电阻Rp阻值。

 对于UFP而言,其主要是通过CC pin上的电压来得知DFP的输出能力。例如当5V/3A时,DFP会在CC上传递330uA的电流。在UFP上可得到电压330uA5.1K=1.683V。

亦或通过DFP上的上拉电阻10K计算出UFP上CC pin的电压5V5.1K/(5.1K+10K)=1.688V。一样可以判断DFP为Vrd/3.0A。

d:侦测连接到设备的端口类型

文章最开始说过DFP为HOST端,UFP为DEVICE端。DFP端的CC pin上存在上拉电阻Rp,UFP端的CC pin上存在下拉电阻Rd。在DFP与UFP未连接时,DFP上的VBUS是断开的,只有当DFP与UFP连接时,DFP便会打开FET,供电给UFP。

DFP可根据CC1与CC2的负载状态(如下图),来判断它是否接到了debug or Audio accessory装置。

e:  配置VCONN

从下图可以看到插座的A5与B5分别存在的是CC1与CC2。与之相对应的插头在A5与B5存在的是CC与Vconn。

CC Pin有CC1与CC2。当其中一个Pin被用来做DFP与UFP之间的连接。另一个Pin则用来供Vconn。当Cable内将另一个CC pin接一个下拉电阻Ra,这表示这是一条主动式Cable,需要被供电的。DFP侦测到Ra,便会输出VCONN在CC pin,供电给Cable(内部含有emark芯片)。Ra的阻抗是定义为800ohm 1200ohm。这个CC引脚将切换至VCONN对外输出4.755.5V,功率最大1W。

 f: 在两个端口间协商建立DFP和UFP身份

Type-C除了DFP与UFP,还有一种是DRP(双模式端口,前面提过手机就是DRP),可以以一定的间隔在DFP与UFP间来回切换。当DRP端口与DFP设备相连,DRP则切换为UFP设备;同样地也可以切换为DFP设备。当两个DRP设备连接时,DFP与UFP身份是随机的。

此为某手机内部CC Logic芯片的内部框架图,可以看到CC Pin内部有个开关在RP与RD切换。

DRP未接入任何设备时,开关来回切换,CC1与CC2波形如上图所示。当有设备接入后,根据设备的不同,开关会固定在一端,此时DRP只能是一种模式,为UFP或者DFP。

g: 配置使用其他外设模式

Type-C规范定义了替代(Alt)模式与外设(Accessory)模式。主机、设备与线缆可以发送格式化的厂商自定义信息(VDM)来交换信息和发现USB ID。当主机通过VDM与设备交换信息后进入 Alt 模式,Type-C接口中的引脚定义将会改变以支持PCIe或者DisplayPort。下面的例子是一个Type-C扩展坞,它使用MUX切换PCIe或USB 3.1信号通至Type-C端口。

当CC1和CC2引脚同时使用Ra下拉时,主机将把设备识别成音频设备,然后从USB信号切换至音频信号。

从图中也可以同时看出来,接入音频设备时,Dp接入耳机的右声道,Dn接入耳机的左声道,SBU则连接至MIC

3: Type-c版本

Type C 接口实际上为了适应不同的用途(全功能 24P Type C 价格较高为了节约成本,比如很多时候使用的芯片不需要使用或不支持 24 个引脚,不需要使用音视频传输,只需要使用 USB2.0,所以此时使用 24 片引脚的全功能版本 Type C 就显得浪费)按功能需求进行划分从而拥有多个版本,前面描述的实际属于全功能 Type C,共有 24 个功能引脚,该版本可以支持 USB3.0、USB2.0、协议,音视频传输,快速充电协议等等。

1:全功能 USB3.0/3.1、USB2.0、视频传输,24P Type C,目前我们交流说的 Type C 默认指的就是 24P 全功能 Type C。(24pin

2:仅支持 USB2.0,16P/12P Type C,16Pin 和 12Pin 实际属于同一种接口。(16/12pin)
3:仅支持充电,6P Type C。(6pin)


所以对于 Type C 共有以上四个版本,实际使用因该是三个版本,在电路设计时按照自己实际需要实现的 USB 通信类型进行选择相应的 Type C 接口。

16P 与 12P Type C 接口定义

从上图可知 16Pin Type C 在 24Pin 全功能版本的基础上移除了 USB3.0 的 TX1/2、RX1/2 引脚,保留了 SBU1/2、CC1/2、USB2.0 的 D+ 和 D- 引脚,除了不支持 USB3.0/3.1 高速传输外,其他没有任何的差别,同样可以支持 PD 快充、音频传输、HDMI 传输、调试模式等其他功能。

 6P Type C 接口定义
对于仅需支持充电,那么 USB2.0 D+ 和 D- 引脚也可移除进一步节约接口制造成本。6Pin Type C 仅保留Vbus、GND、CC1、CC2 引脚。接口两侧同样对称分布 Vbus 和 GND ,CC1,CC2 引脚用于支持正反接入,以及快充协议的支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/883988.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OpenHarmony(鸿蒙南向开发)——小型系统内核(LiteOS-A)【LMS调测】

往期知识点记录: 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总 鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~ 持续更新中…… 基本概念 LMS全称为Lite Memory Sanitizer,是一种实时…

Xcode报错:The request was denied by service delegate (SBMainWorkspace)

Xcode报错:The request was denied by service delegate (SBMainWorkspace) 造成的原因: (1)新的M2芯片的Mac电脑 (2) 此电脑首次安装启动Xcode的应用程序 (3)此电脑未安装Rosetta 解决方法: (1)打开终端…

传奇GEE引擎版本如何封挂?GEE引擎设置简单的封挂脚本教程

网关参数设置gee引擎封挂脚本 1、打开M2-选项-参数设置-游戏速度 把所有的设置限速关闭 2、打开M2-选项-客户端设置-内挂控制-速度控制:移动速度 攻击速度 魔法速度 设置好参数,一旦设置不要修改 否则封挂网关参数需重新设置 打开M2-选项-功能设置-…

计算机毕业设计 基于Flask+Vue的博客系统 Python毕业设计 前后端分离 附源码 讲解 文档

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点…

二、kafka生产与消费全流程

一、使用java代码生产、消费消息 1、生产者 package com.allwe.client.simple;import lombok.extern.slf4j.Slf4j; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.clients.pr…

单通道串口服务器

型号: SG-TCP232-110 功能简介 SG-TCP232-110 是一款用来进行串口数据和网口数据转换的设备。解决普通串口设备在 Internet 上的联网问题。 设备的串口部分提供一个 232 接口和一个 485 接口,两个接口内部连接,同时只能使用一个口工作。 设备…

CVE-2024-46103

前言 CVE-2024-46103 SEMCMS的sql漏洞。 漏洞简介 SEMCMS v4.8中,SEMCMS_Images.php的search参数,以及SEMCMS_Products.php的search参数,存在sql注入漏洞。 (这个之前就有两个sql的cve,这次属于是捡漏了&#x1f6…

Linux环境下安装python

Linux 环境下安装python 以下是在Linux环境下安装Python - 3.9.4.tgz的详细步骤:1. 下载Python - 3.9.4.tgz(如果未下载)2.解压文件3.安装依赖项(如果需要)4.配置和编译5.安装6.创建一个别名(alias&#xf…

Sql Developer日期显示格式设置

默认时间格式显示 设置时间格式:工具->首选项->数据库->NLS->日期格式: DD-MON-RR 修改为: YYYY-MM-DD HH24:MI:SS 设置完格式显示:

JavaEE: 深入探索TCP网络编程的奇妙世界(四)

文章目录 TCP核心机制TCP核心机制四: 滑动窗口为啥要使用滑动窗口?滑动窗口介绍滑动窗口出现丢包咋办? TCP核心机制五: 流量控制 TCP核心机制 上一篇文章 JavaEE: 深入探索TCP网络编程的奇妙世界(三) 书接上文~ TCP核心机制四: 滑动窗口 为啥要使用滑动窗口? 之前我们讨…

计算机网络--HTTP协议

1.TCP,UDP的对比图 TCP:面向连接的,可靠的,字节流服务; UDP:无连接的,不可靠的,数据报服务; 2.补充网络部分的其他知识点 1).复位报文段 在某些特殊条件下, TCP 连接的一端会向另一端发送携带 RST 标志的报文段,即复位报文段,已通知对方…

大数据-146 Apache Kudu 安装运行 Dockerfile 模拟集群 启动测试

点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…

视觉分析在垃圾检测中的应用

随着城市化进程的加快,垃圾管理成为现代城市面临的重大挑战。有效的垃圾识别和分类不仅能提升环境保护的效率,还能减少资源浪费。基于视觉分析的垃圾识别算法应运而生,为解决这一问题提供了技术支持。 垃圾识别算法的技术实现主要依赖于深度学…

002、视频格式转换

下载地址 http://www.pcfreetime.com/formatfactory/CN/index.html

【C++进阶】AVL树的介绍及实现

【C进阶】AVL树的介绍及实现 🥕个人主页:开敲🍉 🔥所属专栏:C🥭 🌼文章目录🌼 1. AVL的介绍 2. AVL树的实现 2.1 AVL树的结构 2.2 AVL树的插入 2.2.1 插入一个值的大概过程 2.2.2 …

2024年中国电子学会青少年软件编程(Python)等级考试(二级)核心考点速查卡

考前练习 2024年03月中国电子学会青少年软件编程(Python)等级考试试卷(二级)答案 解析 2024年06月中国电子学会青少年软件编程(Python)等级考试试卷(二级)答案 解析 知识点描述 …

C语言题目之单身狗2

文章目录 一、题目二、思路三、代码实现 提示:以下是本篇文章正文内容,下面案例可供参考 一、题目 二、思路 第一步 在c语言题目之打印单身狗我们已经讲解了在一组数据中出现一个单身狗的情况,而本道题是出现两个单身狗的情况。根据一个数…

LabVIEW编程能力如何能突飞猛进

要想让LabVIEW编程能力实现突飞猛进,需要采取系统化的学习方法,并结合实际项目进行不断的实践。以下是一些提高LabVIEW编程能力的关键策略: 1. 扎实掌握基础 LabVIEW的编程本质与其他编程语言不同,它是基于图形化的编程方式&…

宝塔面板部署雷池社区版教程

宝塔面板部署雷池社区版教程 简单介绍一下宝塔面板,安全高效的服务器运维面板,使用宝塔面板的人非常多 在网站管理上,许多用户都是通过宝塔面板进行管理,宝塔面板的Nginx默认监听端口为80和443,这就导致共存部署时雷池…

信息安全工程师(23)网络安全体系相关模型

前言 网络安全体系相关模型是描述网络安全体系如何实现的理论框架和抽象模型,它们为理解和设计网络安全解决方案提供了系统化的方法。 1. PDR模型 提出者:美国国际互联网安全系统公司(ISS)核心内容:保护(Protection)、检测(Detection)、响应(…