Linux下线程间的通信

为什么需要线程通信?

  • 线程是操作系统调度的最小单元,拥有自己的栈空间。
  • 如果线程之间孤立运行,可能会导致资源浪费。
  • 线程需要协调工作以完成共同的任务,这就需要线程间相互通信

在 Linux 系统中,线程间通信(Inter-Thread Communication, ITC)是多线程程序设计中的一个重要方面。由于线程共享相同的内存空间,它们可以直接通过读写共享变量来进行通信。

线程间通信的类型:

主线程向子线程传递参数

  • 通过 pthread_create 函数的第四个参数 arg 传递。
  • arg 参数是一个 void* 类型的指针,可以指向任何类型的数据。
 int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
                          void *(*start_routine) (void *), void *arg);

 示例代码:

void* thread(void* args) 
{
    int num = *(int*)args;
    printf("num = %d\n", num);
    pthread_exit(NULL);
}

int main() {
    pthread_t thread_id;
    int num = 100;
    if (pthread_create(&thread_id, NULL, thread, &num) != 0) {
        fprintf(stderr, "pthread_creat error\n");
        exit(EXIT_FAILURE);
    }
    printf("thread id is %ld\n", thread_id);
    pthread_join(thread_id, NULL);
    return 0;
}

 子线程向主线程传递参数

  • 子线程通过 pthread_exit 函数的 retval 参数返回值。
void pthread_exit(void *retval);
  • 主线程通过 pthread_join 函数的第二个参数 retval 获取返回值。
int pthread_join(pthread_t thread, void **retval);

示例代码:

void* do_thread_function(void* args) {
    static float score = 92.3;
    pthread_exit(&score);
}

int main() {
    pthread_t thread_id;
    if (pthread_create(&thread_id, NULL, do_thread_function, NULL) != 0) {
        fprintf(stderr, "pthread_creat error\n");
        exit(EXIT_FAILURE);
    }
    printf("thread id is %ld\n", thread_id);
    void* res = NULL;
    pthread_join(thread_id, &res);
    printf("*res = %.2f\n", *(float*)res);
    return 0;
}

 线程通信的同步机制:

 在Linux环境下,线程间的通信主要依赖于操作系统提供的同步机制,以确保线程安全地访问共享资源。

互斥锁(Mutex)

线程互斥锁(Mutex)是线程间通信中最基本的同步机制之一,用于保护临界区,确保同一时刻只有一个线程可以访问共享资源。

a.为什么要使用互斥锁?

使用线程互斥锁的主要原因是为了解决多线程程序中的数据竞争问题,确保数据的一致性和线程的同步执行。

  • 当多个线程同时访问和修改同一数据时,如果没有适当的同步机制,可能会导致数据不一致。线程互斥锁可以确保在任何时刻只有一个线程能够访问和修改共享数据。
  • 在多线程环境中,如果多个线程同时对数据进行读写操作,可能会导致数据的不一致性。互斥锁可以确保在修改数据时,其他线程不能访问该数据,从而保证数据的完整性
  • 互斥锁可以用来控制线程的执行顺序,确保线程按照预期的顺序执行。例如,在一个线程完成某些初始化工作之前,其他线程需要等待

b.互斥锁的基础概念

线程互斥锁的工作原理:
  1. 锁定(Lock):当一个线程想要访问共享资源时,它必须先获取互斥锁。如果互斥锁已经被其他线程持有,则该线程将被阻塞,直到互斥锁被释放。
  2. 解锁(Unlock):当线程完成对共享资源的访问后,它会释放互斥锁,这样其他等待的线程就可以获取互斥锁并访问共享资源
线程互斥锁的特点:
  • 互斥性:确保同一时刻只有一个线程可以持有锁。
  • 原子性:获取和释放锁的操作是原子的,即它们是不可分割的。
  • 死锁避免:通过正确的使用互斥锁,可以避免死锁的发生

c.线程互斥锁初始化

线程互斥锁的初始化是使用互斥锁之前的重要步骤,它为互斥锁设置了一个初始状态。在POSIX线程(pthread)库中,互斥锁的初始化可以通过两种方式进行:静态初始化和动态初始化

1.静态初始化

静态初始化是在编译时进行的,适用于在程序开始执行之前就已经确定了互斥锁的使用场景

#include <pthread.h>

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
2.动态初始化

动态初始化是在程序执行过程中进行的,提供了更多的灵活性,比如可以设置互斥锁的属性

函数头文件:
#include <pthread.h>

函数原型:
int pthread_mutex_init(pthread_mutex_t *restrict mutex,
           const pthread_mutexattr_t *restrict attr);

函数参数:
mutex:指向 pthread_mutex_t 类型变量的指针,这个变量用于存储互斥锁的状态。
attr(可选):指向 pthread_mutexattr_t 类型变量的指针,这个变量包含了互斥锁的属性。如果不需要设置特殊属性,可以传递 NULL 来使用默认属性

函数返回值:
成功:返回0,表示函数调用成功,互斥锁初始化完成。
失败:返回错误码,表示函数调用失败

错误码:
EAGAIN:系统缺乏必要的资源(除了内存)来初始化另一个互斥锁
ENOMEM:内存不足,无法初始化互斥锁
EINVAL:提供的属性无效
EPERM:调用者没有执行操作的权限
3.销毁互斥锁

当互斥锁不再使用时,应该使用pthread_mutex_destroy函数销毁它,以释放任何资源

函数头文件:
#include <pthread.h>

函数原型:
int pthread_mutex_destroy(pthread_mutex_t *mutex);

函数参数:
mutex:指向 pthread_mutex_t 类型变量的指针,这个变量表示要销毁的互斥锁。

函数返回值:
成功:返回0,表示函数调用成功
失败:返回错误码,表示函数调用失败

错误码:
EBUSY:互斥锁仍然被某个线程持有,无法销毁。
EINVAL:mutex 参数无效或未初始化

d.线程互斥锁的操作

1.获取锁
函数头文件:
#include <pthread.h>

函数原型:
int pthread_mutex_lock(pthread_mutex_t *mutex);

函数参数:
mutex:指向 pthread_mutex_t 类型变量的指针,表示要锁定的互斥锁

函数返回值:
成功:返回0,表示函数调用成功
失败:返回错误码,指示错误

错误码:
EBUSY:互斥锁已被其他线程锁定,且无法立即获得。
EAGAIN:表示系统资源不足,无法立即锁定互斥锁。这通常发生在系统资源限制,如达到最大互斥锁数量时。
EINVAL:mutex 参数无效,表示互斥锁对象无效或未正确初始化。
EPERM:当设置了一个健壮(robust)互斥锁,并且互斥锁的原拥有者终止了,而没有解锁。新线程试图锁定这个互斥锁时,会得到此错误
2.释放锁
函数头文件:
#include <pthread.h>

函数原型:
int pthread_mutex_unlock(pthread_mutex_t *mutex);

函数参数:
mutex:指向 pthread_mutex_t 类型变量的指针,表示要锁定的互斥锁

函数返回值:
成功:返回0,表示函数调用成功
失败:返回错误码,指示错误

错误码:
EPERM:调用线程不拥有互斥锁。在POSIX标准中,试图解锁一个未锁定的互斥锁或由其他线程持有的互斥锁会导致这个错误。
EINVAL:mutex 参数无效,可能是因为它未初始化,或者是一个损坏的互斥锁对象

 互斥锁示例代码(使用动态初始化):

#include <pthread.h>
#include <stdio.h>

pthread_mutex_t mutex;

void* thread_function(void* arg) {
    // 获取锁
    int result = pthread_mutex_lock(&mutex);
    if (result != 0) {
        fprintf(stderr, "互斥锁锁定失败: %s\n", strerror(result));
        exit(EXIT_FAILURE);
    }

    // 访问共享资源
    printf("访问共享资源\n");

    // 释放锁
    result = pthread_mutex_unlock(&mutex);
    if (result != 0) {
        fprintf(stderr, "互斥锁解锁失败: %s\n", strerror(result));
        exit(EXIT_FAILURE);
    }

    return NULL;
}

int main() {
    int result = pthread_mutex_init(&mutex, NULL);
    if (result != 0) {
        fprintf(stderr, "互斥锁初始化失败: %s\n", strerror(result));
        exit(EXIT_FAILURE);
    }

    pthread_t thread;
    result = pthread_create(&thread, NULL, thread_function, NULL);
    if (result != 0) {
        fprintf(stderr, "线程创建失败: %s\n", strerror(result));
        exit(EXIT_FAILURE);
    }

    pthread_join(thread, NULL);
    pthread_mutex_destroy(&mutex);

    return 0;
}

结语:

无论你是初学者还是有经验的开发者,我希望我的博客能对你的学习之路有所帮助。如果你觉得这篇文章有用,不妨点击收藏,或者留下你的评论分享你的见解和经验,也欢迎你对我博客的内容提出建议和问题。每一次的点赞、评论、分享和关注都是对我的最大支持,也是对我持续分享和创作的动力

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/883555.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL数据库进阶知识(四)《视图、存储过程、触发器》

学习目标&#xff1a; 掌握数据库视图基础知识 掌握数据库存储过程原理 掌握数据库触发器相关知识 学习内容&#xff1a; 一. 视图 介绍 视图&#xff08;View&#xff09;是一种虚拟存在的表。视图中的数据并不在数据库中实际存在&#xff0c;行和列数据来自定义视图的查询…

基于GIKT深度知识追踪模型的习题推荐系统源代码+数据库+使用说明,后端采用flask,前端采用vue

基于GIKT深度知识追踪模型的习题推荐系统 目录结构 Flask-BackEnd flask后端 app 后端主体文件 alg 深度学习模块 data 数据集data_process.py 数据预处理gikt.py GIKT模型pebg.py PEBG模型params.py 一些参数train.py 仅模型训练train_test.py 模型训练和测试-五折交叉验证t…

Docker 天池代码提交

参考零基础入门Docker-cuda练习场_学习赛_天池大赛-阿里云天池的赛制 (aliyun.com) ​ 在Docker零基础入门-CSDN博客中我已经安装了docker,现在开始创建自己的镜像仓库。 1. 开通阿里云容器镜像服务(镜像仓库) 进入容器镜像服务 (aliyun.com) 1.1. 创建个人实例 点击“…

try catch 应该在for循环里面还是外面?

今天咱们就来聊聊“try catch 应该在 for 循环里面还是外面”的问题&#xff0c;别小看这句话&#xff0c;背后可是有大智慧的。 首先&#xff0c;咱得明确一点&#xff0c;try catch 是为了处理异常的。它能让你的代码在遇到问题时不至于“崩溃”&#xff0c;更像是你职场生涯…

实景三维夯实数字乡村孪生底座

随着数字乡村建设的不断推进&#xff0c;实景三维技术在乡村规划、管理、服务等方面发挥着越来越重要的作用。本文将探讨实景三维技术如何夯实数字乡村的孪生底座&#xff0c;为乡村的可持续发展提供强有力的支撑。 一、数字乡村建设的背景 数字乡村建设是推动乡村全面振兴、…

使用Crawler实例进行网页内容抓取

网页内容抓取的背景 随着互联网的快速发展&#xff0c;网页上的信息量日益庞大。如何从海量的网页中快速、准确地抓取所需信息&#xff0c;成为了一个技术挑战。网页内容抓取技术通过自动化的方式&#xff0c;模拟用户浏览网页的过程&#xff0c;获取网页上的文本、图片、链接…

探索未来:MultiOn,AI的下一个革命

文章目录 探索未来&#xff1a;MultiOn&#xff0c;AI的下一个革命背景&#xff1a;为什么选择MultiOn&#xff1f;MultiOn是什么&#xff1f;如何安装MultiOn&#xff1f;简单的库函数使用方法场景应用常见问题及解决方案总结 探索未来&#xff1a;MultiOn&#xff0c;AI的下一…

深度学习与应用:行人跟踪

**实验 深度学习与应用&#xff1a;行人跟踪 ** ------ **1、 实验目的** ------ - 了解行人跟踪模型基础处理流程 - 熟悉行人跟踪模型的基本原理 - 掌握 行人跟踪模型的参数微调训练以及推理的能力 - 掌握行人跟踪模型对实际问题的应用能力&#xff0c;了解如何在特定的场景和…

pycirclize python包画circos环形图

pycirclize python包画circos环形图 很多小伙伴都有画环形图的需求&#xff0c;网上也有很多画环形图的教程&#xff0c;讲解circos软件和circlize R包的比较多&#xff0c;本文介绍一款python包:pyCirclize。适合喜欢python且希望更灵活作图的小伙伴。 pyCirclize包实际上也…

LSI SAS 9361-8i和SAS3008 12 gb / s PCIe 3.0 RAID 阵列卡配置

LSI SAS 9361-8i和SAS3008 12 gb / s PCIe 3.0 RAID 阵列卡配置 开机&#xff0c;BIOS自检&#xff0c;可以看到设备硬盘信息&#xff0c;以及提示CtrlR进入Raid卡配置界面。 按CtrlR进入Raid卡配置界面&#xff0c;一般来说使用CtrlR进入Raid卡配置界面的Raid卡配置都通用。 …

【Qualcomm】高通SNPE框架的使用 | 原始模型转换为量化的DLC文件 | 在Android的DSP端运行模型

目录 ① 激活snpe环境 ② 设置环境变量 ③ 模型转换 ④ run 首先&#xff0c;默认SNPE工具已经下载并且Setup相关工作均已完成。同时&#xff0c;拥有原始模型文件&#xff0c;本文使用的模型文件为SNPE 框架示例的inception_v3_2016_08_28_frozen.pb文件。image_file_list…

点餐小程序实战教程11数据源设计

目录 1 设计图2 创建数据源2.1 菜品分类2.2 菜品表 3 创建管理应用4 设置上架下架功能总结 我们用了10篇讲解了一下用户管理及权限设计&#xff0c;有了用户和权限相当于有了骨架&#xff0c;但是我们还需要有良好的设计来确保我们的小程序的开发顺利进行。 在数据源的设计中&a…

通信工程学习:什么是PNF物理网络功能

PNF:物理网络功能 PNF(Physical Network Function)即物理网络功能,是指支持网络功能的物理设备。以下是关于PNF的详细解释: 一、定义与特点 定义: PNF是网络设备厂商(如Cisco、华为、H3C等)通过专用硬件实体提供软件功能的设备。这些设备直接在物理服务器上运…

拓数派荣获上海数据交易所“数据治理服务商”认证

近期&#xff0c;杭州拓数派科技发展有限公司&#xff08;以下简称“拓数派”&#xff09;荣获上海数据交易所“数据治理服务商”认证&#xff0c;标志着拓数派正式加入上海数据交易所数商生态&#xff0c;成为上海数据交易所官方认证的数据治理服务商。拓数派企业发展部总监吴…

初识 C 语言(一)

目录 一、 第一个 C 程序1. printf() 函数和 stdio.h 头文件2. main() 函数和 return 语句 二、类型和变量1. C 语言中的基本类型2. 变量的创建和命名规则3. 类型和变量的大小 三、printf() 函数和 scanf() 函数1. printf() 函数的使用2. 各种类型的输出格式3. scanf() 函数的使…

Java 中Lock接口锁的使用

目录 一. Lock接口下的实现类 1. ReentrantLock可重入锁 1.1. 可重入锁的原理 1.2. ReentrantLock的特点 1.3. 使用注意 1.4. 代码示例 2. ReentrantReadWriteLock读写锁 2.1. 实现原理 2.2. 注意事项 2.3. 代码示例 一. Lock接口下的实现类 在Java中&#xff0c;Lo…

【Kubernetes】日志平台EFK+Logstash+Kafka【实战】

一&#xff0c;环境准备 &#xff08;1&#xff09;下载镜像包&#xff08;共3个&#xff09;&#xff1a; elasticsearch-7-12-1.tar.gz fluentd-containerd.tar.gz kibana-7-12-1.tar.gz &#xff08;2&#xff09;在node节点导入镜像&#xff1a; ctr -nk8s.io images i…

离散化 ---( 求区间和)

什么是离散化&#xff1f; 离散化是将连续的数值范围映射到有限的、离散的数值集合的过程。在许多情况下&#xff0c;数据可能会存在多个重复值或范围较大的连续值。为了简化处理&#xff0c;尤其是处理区间查询和增量问题时&#xff0c;我们可以将这些值转换为一组有限的、唯一…

C++ const成员函数

个人主页&#xff1a;Jason_from_China-CSDN博客 所属栏目&#xff1a;C系统性学习_Jason_from_China的博客-CSDN博客 所属栏目&#xff1a;C知识点的补充_Jason_from_China的博客-CSDN博客 C const引用常量 使用规则 引用常量对象&#xff1a;可以引用一个常量对象&#xff0…

zabbix基本概念与组件

文章目录 一、zabbix简介二、​​​​​​​zabbix构成三、​​​​​​​zabbix监控对象四、​​​​​​​zabbix常用术语五、 Zabbix 6.0 新特性1.Zabbix server高可用防止硬件故障或计划维护期的停机2.Kubernetes系统从多个维度采集指标 六、zabbix 工作原理1、主动模式2、…