【医疗大数据】医疗保健领域的大数据管理:采用挑战和影响

选自期刊**《International Journal of Information Management》**(IF:21.0)

医疗保健领域的大数据管理:采用挑战和影响

1、研究背景

  • 本研究的目标是调查阻止医疗机构实施成功大数据系统的组织障碍,识别和评估这些障碍,并为管理者提供战略解决方案。

  • 大数据被广泛认为是各种组织管理过程的解释,许多机构在应用医疗大数据系统时因可预测和不可预测的障碍而早期失败,这些障碍可能来自组织、医生、患者或政府等不同因素,本研究特别关注由采纳者产生的内部障碍,特别是组织方面。

  1. 研究框架
    • 基于创新抵抗理论的障碍框架,确定医疗大数据的障碍。
    • 通过与直接参与医疗大数据系统采用的重要专家进行半结构化访谈,探索台湾医疗行业的障碍,包括医生、医疗人员和学者。
    • 进行文献综述,以识别不同研究中先前指出的障碍,便于比较实践中的固有障碍和理论中提到的障碍。
  2. 台湾医疗行业的特别关注
    • 台湾受到各种政府和公众的密切关注,使得研究该国具有价值。
    • 台湾有超过15,000家诊所采用EHRs,代表了一个覆盖全国人口的巨大医疗数据库。
    • 每个台湾患者平均每年看医生15次,实验室测试和处方的复制相当可观。

2、文献回顾

2-1 台湾医疗环境

  • 台湾自1980年代初期开始医疗改革,受到美国和日本等国家的影响。
  • 1995年建立了全民健康保险(NHI)模式,旨在为台湾公民提供最大的医疗福利。
  • NHI模式覆盖了预防性医疗服务、处方药、牙科服务、中医服务和家庭护理访问。
  • 到2016年,几乎100%的人口都加入了NHI计划。

2-2 医院信息系统(HIS)

  • HIS在医院环境中被广泛采用,强调医院的行政需求。
  • HIS旨在建立一个无纸化环境,涵盖医院运营的各个方面,如临床、行政和财务系统。
  • 医院需要处理大量的日常门诊访问,这导致了数据在客户端和服务器之间的连续传输。
  • 物联网(IoT)技术通过连接人和物体提供了便捷的生活环境,促进了从集中式计算机方案向分布式环境的转变。
  • 许多医院努力提高行政效率,降低成本,并为患者提供高质量和用户友好的服务。

2-3 医疗中的大数据

  • 大数据被描述为需要成本效益和创新形式的信息处理的高容量、高速度和/或高多样性的信息资产
  • 大数据在医疗领域被称为医疗大数据,对医院和诊所的决策过程至关重要。
  • 医疗大数据通常是非结构化和复杂的,需要一个强大的管理系统来提高其有效使用。
  • 大数据挖掘过程可以从大型数据集中提取有价值的信息,关联规则挖掘在数据挖掘过程中非常有用。
  • 机器学习(ML)是计算机科学中的一个热门领域,但在医疗领域缺乏高质量的大数据,面临着相当的挑战。
  • 交互式机器学习(iML)可以通过强化、偏好和主动学习的优势来改善高质量大数据的不足。

2-4 医疗大数据的挑战

  • 医疗大数据的采用在组织内部面临多方面的挑战,尤其是专业知识、运营、资源、法规和市场准入方面的障碍。
  • 专业知识障碍:缺乏技术专长可能导致组织未能采用技术创新。
  • 运营障碍:组织可能因为过度专业化和对变革的抵制而遇到障碍。
  • 资源障碍:资金不足可能阻碍任何商业企业的成功。
  • 法规障碍:法规和政策的变化和控制给医疗大数据技术的实施带来了困难。
  • 市场准入障碍:创新者必须克服从市场到潜在用户的广泛障碍。

3、研究方法

3-1 专家访谈
  • 目的:通过与行业专家的访谈,确定医疗机构在大数据发展中的阻力因素。
  • 定义:专家访谈是一种研究方法,涉及具有特定组织或机构内特定职能地位的行动、责任和义务所带来的独特知识和经验的专家(Bellamy et al., 2006)。
  • 优势:专家访谈能够提供对受访者的深入理解,快速的招募和安排过程,丰富的数据收集,以及与受访者的直接互动(Froschauer & Lueger, 2009)。
  • 数据收集技术:专家访谈是一种吸引人的数据收集技术,因为它能够基于通用和公开的数据,弥合案例研究和不同国家比较之间的差距,并为比较研究提供对核心维度的控制(Dorussen et al., 2005)。
3-2 分析网络过程(ANP)
  • 提出者:Saaty于1996年提出,旨在解决层次分析法(AHP)在现实世界决策问题评估中的局限性(Saaty & Begicevic, 2010; Saaty, 2006, 2007)。
  • 特点:ANP能够确定现实世界决策问题中因素的权重,考虑到依赖和反馈关系(Lin & Kuo, 2018; Lin, 2015; Lin et al., 2016; Liu et al., 2012)。
  • 应用:ANP被用于策略评估和替代选择,例如基于ANP和TOPSIS技术的策略评估和选择框架(Chang et al., 2019)。
  • 步骤
    1. 构建评估系统的网络结构:精确描述问题,将其划分为包括替代方案群集的群集,并明确节点和群集之间的相互依赖性。
    2. 开发成对比较以确定因素的相对重要性:使用Niemira和Saaty(2004)的九点基本尺度进行比较。
    3. 进行一致性测试:计算比较的判断一致性,使用一致性指数(CI)和一致性比率(CR)。
    4. 建立和计算超矩阵:将局部优先向量放置在超矩阵的适当列中,以实现具有相互依赖关系的系统中的全局优先级。
    5. 确定最佳解决方案:通过将加权超矩阵提升到2k次幂来获得长期稳定的权重范围,其中k是一个任意大的数字。
3-3 VIKOR方法
  • 定义:VIKOR是多标准决策制定中的一种最佳折中编程方法,旨在定义理想解(正理想解)和负理想解。
  • 理念:理想解是指所有替代方案中所有评估因素中最好的,而负理想解是评估因素中最差的替代方案。
  • 评估和排序:通过比较替代方案与理想接近度的估计值来对替代方案进行优先级排序。
  • 特点:VIKOR方法包括最大化“群体利益”和最小化“对个体遗憾的反对”,以便政策制定者接受折中解决方案。
  • 计算步骤
    1. 寻找理想和负理想解:确定每个替代方案的理想和负理想解。
    2. 计算替代方案的总体利益和个体遗憾:计算每个维度和指标与理想解之间的差异。
    3. 计算和排序替代方案的综合利益:使用总体利益和个体遗憾来建立综合利益并排序替代方案。

4、实际分析和结果

4-1. 专家访谈

  • 研究方法:进行了32次专家访谈,访谈对象包括医生、医疗人员和学者
  • 参与者背景:31位专家来自台湾的大型知名医疗机构,如台北荣民总医院、台中中国医药大学医院和台南成功大学医院。1位专家是加拿大多伦多大学的大数据专家和研究员,由于地理距离,通过电话进行访谈。
  • 访谈时长:每次访谈时长在45至60分钟之间。
  • 访谈地点:在参与者的工作机构进行。
  • 参与者多样性:表1展示了参与访谈的专家的人口统计学多样性。

  • 分析方法:分析了参与者的交流内容,并总结了他们分享的主要主题。

  • 主要障碍维度:识别出五个主要的障碍维度,包括专业知识、运营、法规、资源和市场准入障碍

  • 抵抗因素:在每个维度中,参与者揭示了各种具体的抵抗因素,这些因素最终被分为四个组,每组包含每个维度最常提及的因素。

  • 分析工具:使用ANP方法分析这些维度和抵抗因素。

4.2. Analytic Network Process (ANP)

  • ANP定义:ANP是一种实用工具,用于将问题建模为因素和备选方案的网络,这些因素和备选方案可以以多种可能的方式相互78关联。
  • 因果关系:通过ANP实施,研究揭示了维度和抵抗因素之间的因果关系及其权重。
  • 权重计算:使用ANP计算因素的权重,每个维度只有一个主成分。
  • 权重矩阵:通过标准化和转置总影响矩阵获得相对权重矩阵(表2),提供相对重要性权重后获得加权超矩阵(表3)。

  • 收敛过程:通过乘以自身,加权超矩阵的依赖关系逐渐收敛,得到极限超矩阵(表4)。

  • 最优权重:组件权重的超矩阵是最优权重(表5)。

在这里插入图片描述

4.3. Vlse Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR)

  • 理想与负理想解:通过问卷获得VIKOR相关值,因素得分范围从0到10。设定理想解为10,负理想解为0,权重值为ANP计算后的值。
  • 总体利益与个体遗憾:使用ANP获得相对加权值。表8展示了医疗大数据的重要性指数。
  • 综合利益排序:根据VIKOR方法的最后步骤,计算每种策略的Rvk值。表9展示了在不同v值下Rvk的值,使用v=0.5追求最大总体利益和最小个体遗憾。
  • 策略序列:使用v=0.5评估适当的备选方案,并建立追求最大总体利益和最小个体遗憾的指标。表10展示了当v=0.5时参与者的Rvk策略序列,结果表明与医生和医疗人员相比,学者对医疗大数据发展最为关注,并为消除医疗机构实施大数据系统的障碍提供了最坚实的建议。

5、讨论

5-1 主要障碍

  1. 操作障碍:主要源于数据收集和质量问题。医疗大数据的非参数模型可能导致数据网络的隐藏节点和计算复杂性的指数增长,从而产生障碍。
  2. 市场准入障碍:主要问题是对医疗大数据增值应用的限制。

5-2 专家群体的观点

  • 学者:被视为能够为医疗机构提供最战略性和可靠性咨询的专家。
  • 医生和医疗人员:虽然他们对医疗机构的内部发展有深入了解,但对医疗大数据的不信任和对新系统的困难感知可能限制了他们的洞察力。

5-3 研究限制和未来研究

  • 研究范围有限,主要数据收集在台湾进行,可能需要在更广泛的背景下进行研究以确保数据的可信度和适用性。
  • 参与者群体之间的平衡不足,特别是医疗人员和学者的数量较少。
  • 只涉及了医生、医疗人员和学者三组专家,未来研究可以包括工程师、政府和患者等其他重要利益相关者的观点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/881417.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序拨打电话点取消报错“errMsg“:“makePhoneCall:fail cancel“

问题:微信小程序中拨打电话点取消,控制台报错"errMsg":"makePhoneCall:fail cancel" 解决方法:在后面加上catch就可以解决这个报错 wx.makePhoneCall({phoneNumber: 181********}).catch((e) > {console.log(e) //用…

调整pycharm中的字体大小

1.找到设置 2.打开setting ,按照图示操作即可

YOLOv5白皮书-第Y1周:调用官方权重进行检测

>- **🍨 本文为[🔗365天深度学习训练营](小团体~第八波) 中的学习记录博客** >- **🍖 原作者:[K同学啊](K同学啊-CSDN博客)** 一、前言 拖了好久,终于要开始目标检测系列了。自己想过好几次&#xf…

中秋节特别游戏:给玉兔投喂月饼

🖼️ 效果展示 📜 游戏背景 在中秋这个充满诗意的节日里,玉兔因为贪玩被赶下人间。在这个温柔的夜晚,我们希望通过一个小游戏,让玉兔感受到人间的温暖和关怀。🐰🌙 🎮 游戏设计 人…

Broadcast:Android中实现组件及进程间通信

目录 一,Broadcast和BroadcastReceiver 1,简介 2,广播使用 二,静态注册和动态注册 三,无序广播和有序广播 1,有序广播的使用 2,有序广播的截断 3,有序广播的信息传递 四&am…

[产品管理-15]:NPDP新产品开发 - 13 - 产品创新流程 - 具体产品的创新流程:精益生产与敏捷开发

目录 前言:​ 一、集成产品开发IPD模型——集成跨功能团队的产品开发 1.1 概述 1、IPD模型的核心思想 2、IPD模型的主要组成部分 3、IPD模型的实施步骤 4、IPD模型的优点 1.2 基于IPD系统的组织实践等级 1.3 IPD的优缺点 二、瀑布开发模型 1、定义与特点…

21、Tomato

难度 低(个人认为中) 目标 root权限 一个flag 使用VMware启动 kali 192.168.152.56 靶机 192.168.152.66 信息收集 端口信息收集 可以看到有个ftp服务,2211实际是ssh协议端口,80、8888是一个web服务 web测试 80端口显示一个tomato 查看源码给了一些…

opencv图像透视处理

引言 在图像处理与计算机视觉领域,透视变换(Perspective Transformation)是一种重要的图像校正技术,它允许我们根据图像中已知的四个点(通常是矩形的四个角)和目标位置的四个点,将图像从一个视…

软件安装攻略:EmEditor编辑器下载安装与使用

EmEditor是一款在Windows平台上运行的文字编辑程序。EmEditor以运作轻巧、敏捷而又功能强大、丰富著称,得到许多用户的好评。Windows内建的记事本程式由于功能太过单薄,所以有不少用户直接以EmEditor取代,emeditor是一个跨平台的文本编辑器&a…

聊城网站建设:企业如何打造高效官网

聊城网站建设:企业如何打造高效官网 在互联网飞速发展的今天,官方网站已成为企业展示形象、推广产品、与客户沟通的重要平台。尤其对于聊城地区的企业来说,建立一个高效的官网显得尤为重要。本文将分享一些关键步骤,帮助企业打造一…

MapReduce基本原理

目录 整体执行流程​ Map端执行流程 Reduce端执行流程 Shuffle执行流程 整体执行流程 八部曲 读取数据--> 定义map --> 分区 --> 排序 --> 规约 --> 分组 --> 定义reduce --> 输出数据 首先将文件进行切片(block)处理&#xff…

人工智能快速发展下的极端风险管理

文章目录 前言一、快速进步与高风险并存1、深度学习系统缺乏关键功能,其开发周期尚不明朗2、自主人工智能系统一旦导向不良目标,人类可能面临其失控风险 二、技术研发方向调整1、实现安全人工智能的基础性突破,确保人工智能可靠安全2、实现有…

shopro前端 短信登录只显示模板不能正常切换

删掉 换成下面的代码 // 打开授权弹框 export function showAuthModal(type smsLogin) {const modal $store(modal);setTimeout(() > {modal.$patch((state) > {state.auth type;});}, 100); }

Python酷库之旅-第三方库Pandas(123)

目录 一、用法精讲 546、pandas.DataFrame.ffill方法 546-1、语法 546-2、参数 546-3、功能 546-4、返回值 546-5、说明 546-6、用法 546-6-1、数据准备 546-6-2、代码示例 546-6-3、结果输出 547、pandas.DataFrame.fillna方法 547-1、语法 547-2、参数 547-3、…

AI+教育|拥抱AI智能科技,让课堂更生动高效

AI在教育领域的应用正逐渐成为现实,提供互动性强的学习体验,正在改变传统教育模式。AI不仅改变了传统的教学模式,还为教育提供了更多的可能性和解决方案。从个性化学习体验到自动化管理任务,AI正在全方位提升教育质量和效率。随着…

【OJ刷题】双指针问题6

这里是阿川的博客,祝您变得更强 ✨ 个人主页:在线OJ的阿川 💖文章专栏:OJ刷题入门到进阶 🌏代码仓库: 写在开头 现在您看到的是我的结论或想法,但在这背后凝结了大量的思考、经验和讨论 目录 1…

技术周总结 09.09~09.15周日(C# WinForm WPF 软件架构)

文章目录 一、09.09 周一1.1) 问题01: Windows桌面开发中,WPF和WinForm的区别和联系?联系:区别: 二、09.12 周四2.1)问题01:visual studio的相关快捷键有哪些?通用快捷键编辑导航调试窗口管理 2…

Python Selenium 自动化爬虫 + Charles Proxy 抓包

一、场景介绍 我们平常会遇到一些需要根据省、市、区查询信息的网站。 1、省市查询 比如这种,因为全国的省市比较多,手动查询工作量还是不小。 2、接口签名 有时候我们用python直接查询后台接口的话,会发现接口是加签名的。 而签名算法我…

细胞分裂检测系统源码分享

细胞分裂检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vis…

计算机人工智能前沿进展-大语言模型方向-2024-09-20

计算机人工智能前沿进展-大语言模型方向-2024-09-20 1. Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation Authors: Cheng Charles Ma, Kevin Hyekang Joo, Alexandria K. Vail, Sunreeta Bhattacharya, Alvaro Fern’andez Garc’ia, Kailan…