redis实战-缓存三剑客穿透击穿雪崩解决方案

缓存穿透

定义

缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库,造成数据库压力,也让缓存没有发挥出应有的作用

解决方案

  • 缓存空对象

当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,这个数据即使数据库不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了,但这样缓存大量空对象也会消耗内存

  • 布隆过滤器

布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,假设布隆过滤器判断这个数据不存在,则直接返回,优点在于节约内存空间,但会存在误判,即过滤器判断该数据不存在是准确的,但判断存在时就不一定准确,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突

 

解决思路

在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的

现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,欧当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。

编码解决

由于布隆过滤器实现得较为复杂,本项目采用方案一即数据库不存在数据时直接缓存空对象,对查询商铺信息方法进行改造

 @Override
    public Result queryById(Long id) {
        //根据业务代码组装key
        String key = CACHE_SHOP_KEY + id;
        //从redis中获取商铺信息
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        //判断有值的情况
        if (StrUtil.isNotBlank(shopJson)) {
            //将json转化为shop对象直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class);
            return Result.ok(shop);
        }
        //对无值情况进行校验
        if(shopJson!=null){
            return Result.fail("店铺不存在");
        }
        Shop shop = getById(id);
        if (shop == null) {
            //将当前的key的空对象缓存到redis中,过期时间设置稍微短一点
            stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
            return Result.fail("店铺不存在");
        }
        //将数据库查询的数据写入缓存,并设置过期时间
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), CACHE_SHOP_TTL, TimeUnit.MINUTES);
        //返回
        return Result.ok(shop);
    }

缓存雪崩

定义

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

解决方案

  • 给不同的Key的TTL添加随机值,使得key不会同时失效

  • 利用Redis集群提高服务的可用性

  • 给缓存业务添加降级限流策略

  • 给业务添加多级缓存

缓存击穿

定义

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。比如双十一做活动的热门商品数据

情景分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大

 解决方案

  • 互斥锁

因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。这一方案的好处是保证了数据的强一致性,也就是每个线程查询的数据都是最新的数据

情景分析

假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。

编码实现 

核心思路:相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询。如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿

操作锁的代码:

核心思路就是利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,类似于mybatisplus的乐观锁,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。

private boolean tryLock(String key) {
    Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
    return BooleanUtil.isTrue(flag);
}

private void unlock(String key) {
    stringRedisTemplate.delete(key);
}

 锁的代码应该尽量小规模,这里只在访问数据库的时候加上互斥锁

public Shop queryWithMutex(Long id) {
        //根据业务代码组装key
        String key = CACHE_SHOP_KEY + id;
        //从redis中获取商铺信息
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        //判断有值的情况
        if (StrUtil.isNotBlank(shopJson)) {
            //将json转化为shop对象直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class);
            return shop;
        }
        //对无值情况进行校验
        if (shopJson != null) {
            return null;
        }
        //拼装获取锁的key
        String lockKey = LOCK_SHOP_KEY + id;

        Shop shop = null;
        try {
            //获取锁
            boolean b = tryLock(lockKey);
            //获取锁失败要休眠然后继续重试,看缓存中是否已经被别的线程写入数据
            if (!b) {
                Thread.sleep(50);
                return queryWithMutex(id);
            }
            shop = getById(id);
            if (shop == null) {
                //将当前的key的空对象缓存到redis中,过期时间设置稍微短一点
                stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
                return null;
            }
            //将数据库查询的数据写入缓存,并设置过期时间
            stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), CACHE_SHOP_TTL, TimeUnit.MINUTES);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            unlock(lockKey);
        }
        //返回
        return shop;
    }
  • 逻辑过期方案

我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案,让热点key常驻于内存

情景分析

过期时间设置在redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个新线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁,而线程1直接进行返回数据,并不会阻塞等待,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。也就是该方案并不会像互斥锁那样,需要等待堵塞更新数据,导致性能下降,而是直接返回旧数据,但这也带来了数据的不一致性的问题。

 编码实现

思路分析:当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。

 由于需要有逻辑过期的时间变量,需要拓展变量,这里采用redisdata的方式直接将shop封装成redisdata的成员变量,同时该对象具有过期时间这个变量

@Data
public class RedisData {
    private LocalDateTime expireTime;
    private Object data;
}

我们需要进行缓存预热,就是将热点key的数据提前存入redis中,这里使用单元测试将数据写入redis中,注意写入的是redisdata这个对象

 @Override
    public void saveShopToRedis(Long id, Long expireSeconds) {
        Shop show = getById(id);
        //封装redisdata
        RedisData redisData = new RedisData();
        redisData.setData(show);
        redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));
        stringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY+id,JSONUtil.toJsonStr(redisData));
    }

 

 这里开启线程去构建新数据,采用的是开启线程池,节约资源

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {
    String key = CACHE_SHOP_KEY + id;
    // 1.从redis查询商铺缓存
    String json = stringRedisTemplate.opsForValue().get(key);
    // 2.判断是否存在
    if (StrUtil.isBlank(json)) {
        // 3.存在,直接返回
        return null;
    }
    // 4.命中,需要先把json反序列化为对象
    RedisData redisData = JSONUtil.toBean(json, RedisData.class);
    Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
    LocalDateTime expireTime = redisData.getExpireTime();
    // 5.判断是否过期
    if(expireTime.isAfter(LocalDateTime.now())) {
        // 5.1.未过期,直接返回店铺信息
        return shop;
    }
    // 5.2.已过期,需要缓存重建
    // 6.缓存重建
    // 6.1.获取互斥锁
    String lockKey = LOCK_SHOP_KEY + id;
    boolean isLock = tryLock(lockKey);
    // 6.2.判断是否获取锁成功
    if (isLock){

        CACHE_REBUILD_EXECUTOR.submit( ()->{

            try{
                //重建缓存
                this.saveShop2Redis(id,20L);
            }catch (Exception e){
                throw new RuntimeException(e);
            }finally {
                unlock(lockKey);
            }
        });
    }
    // 6.4.返回过期的商铺信息
    return shop;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/88003.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

(6)(6.3) 自动任务中的相机控制

文章目录 前言 6.3.1 概述 6.3.2 自动任务类型 6.3.3 创建合成图像 前言 本文介绍 ArduPilot 的相机和云台命令,并说明如何在 Mission Planner 中使用这些命令来定义相机勘测任务。这些说明假定已经连接并配置了相机触发器和云台(camera trigger and gimbal ha…

opencv简单使用

cv2库安装, conda install opencv-python注意cv2使用时,路径不能有中文。(不然会一直’None’ _ update # 处理中文路径问题 def cv_imread(file_path): #使用之前需要导入numpy、cv2库,file_path为包含中文的路径return cv2.imd…

IP库新增经过实践的Verilog 库

网上严重缺乏实用的 Verilog 设计。Project F 库是尝试让 FPGA 初学者变得更好部分。 设计包括 Clock- 时钟生成 (PLL) 和域交叉Display - 显示时序、帧缓冲区、DVI/HDMI 输出Essential- 适用于多种设计的便捷模块Graphics- 绘制线条和形状Maths- 除法、LFSR、平方根、正弦....…

Excel/PowerPoint条形图改变顺序

条形图是从下往上排的,很多时候不是我们想要的效果 解决方案 选择坐标轴,双击,按下图顺序点击 效果

LLM架构自注意力机制Transformers architecture Attention is all you need

使用Transformers架构构建大型语言模型显著提高了自然语言任务的性能,超过了之前的RNNs,并导致了再生能力的爆炸。 Transformers架构的力量在于其学习句子中所有单词的相关性和上下文的能力。不仅仅是您在这里看到的,与它的邻居每个词相邻&…

前端界面设计

目录 1.兴趣展示网站1.效果2.核心代码展示3.源代码 2.优美的登录网页1.效果2.核心代码展示3.源代码 3.美女相册1.效果2.核心代码展示3.源代码 4.精美选项卡1.效果2.核心代码展示3.源代码 4. 自己写过的一些前端界面设计Demo整理。 1.兴趣展示网站 1.效果 2.核心代码展示 工程截…

vue3 基础知识

vue3创建一个项目 PS D:\code> npm init vuelatestVue.js - The Progressive JavaScript Framework√ Add TypeScript? ... No / Yes √ Add JSX Support? ... No / Yes √ Add Vue Router for Single Page Application development? ... No / Yes √ Add Pinia for sta…

day-24 代码随想录算法训练营(19)回溯part01

77.组合 思路一:回溯相当于枚举,所以我们遍历1-n的每一个数字,然后在遍历第i位的同时递归出第i1~n位的组合结果,跟树的形式相似。 如上图所示,当长度为k时,即退出递归可对遍历到第i位以及剩下位数与k进行比…

GEEMAP 基本操作(一)如何拉伸图像

图像拉伸是最基础的图像增强显示处理方法,主要用来改善图像显示的对比度,地物提取流程中往往首先要对图像进行拉伸处理。图像拉伸主要有三种方式:线性拉伸、直方图均衡化拉伸和直方图归一化拉伸。 GEE 中使用 .sldStyle() 的方法来进行图像的…

死锁的典型情况、产生的必要条件和解决方案

前言 死锁:多个线程同时被阻塞,他们中的一个或全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。 目录 前言 一、死锁的三种典型情况 (一)一个线程一把锁 (二)…

redis常用五种数据类型详解

目录 前言: string 相关命令 内部编码 应用场景 hash 相关命令 内部编码 应用场景 list 相关命令 内部编码 应用场景 set 相关命令 内部编码 应用场景 Zset 相关命令 内部编码 应用场景 渐进式遍历 前言: redis有多种数据类型&…

CSS 实现页面底部加载中与加载完毕效果

效果图 实现代码 <view class"bottom-load-tip"><view class"line-tip"></view><view class"loading-animation" v-if"!lastPage"></view><view>{{ lastPage ? "没有更多了" : "…

自动化测试工具:Airtest入门教程

目录 1.什么是Airtest&#xff1f; 2.AirtestIDE下载安装 3.如何开始使用 4.Airtest入门特例教程 5.总结 1.什么是Airtest&#xff1f; Airtest是一款基于 Python 的、跨平台的UI自动化测试框架。因为它基于 图像识别 的原理&#xff0c;所以适用于所有 Android、 iOS和 …

边写代码边学习之Bidirectional LSTM

1. 什么是Bidirectional LSTM 双向 LSTM (BiLSTM) 是一种主要用于自然语言处理的循环神经网络。 与标准 LSTM 不同&#xff0c;输入是双向流动的&#xff0c;并且它能够利用双方的信息。 它也是一个强大的工具&#xff0c;可以在序列的两个方向上对单词和短语之间的顺序依赖…

Matlab绘制灰度直方图

直方图是根据灰图像绘制的&#xff0c;而不是彩色图像通。查看图像直方图时候&#xff0c;需要先确定图片是否为灰度图&#xff0c;使用MATLAB2019查看图片是否是灰度图片&#xff0c;在读取图片后在MATLAB界面的工作区会显示读取的图像矩阵&#xff0c;如果是&#xff0c;那么…

Cookie 和 Session 的工作流程

目录 一、Cookie是什么&#xff1f; 二、Session是什么? 三、Cookie的工作流程 四、Session的工作流程 五、Session和Cookie的区别和联系 一、Cookie是什么&#xff1f; Cookie是一种在网站和用户之间交换信息的机制。它是由Web服务器发送给用户浏览器的小型文本文件&#xff…

2023国赛数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…

STM32--USART串口

文章目录 通信接口串口通信硬件电路电平标准参数时序 USART主要特性框图 数据帧发送器 波特率发生器SWART串口发送与接收工程串口收发数据包 通信接口 通信接口是指连接中央处理器&#xff08;CPU&#xff09;和标准通信子系统之间的接口&#xff0c;用于实现数据和控制信息在不…

GNN学习笔记

GNN 持续更新 实践程序放在了虚拟机里conda中NS环境里了 b站课程跳转------->>>>> 【不愧是公认最好的【图神经网络GNN/GCN教程】&#xff0c;从基础到进阶再到实战&#xff0c;一个合集全部到位&#xff01;-人工智能/神经网络/图神经网络/深度学习。】 https…

ubuntu 20.04 安装 高版本cuda 11.7 和 cudnn最新版

一、安装显卡驱动 参考另一篇文章&#xff1a;Ubuntu20.04安装Nvidia显卡驱动教程_ytusdc的博客-CSDN博客 二、安装CUDA 英伟达官网&#xff08;最新版&#xff09;&#xff1a;CUDA Toolkit 12.2 Update 1 Downloads | NVIDIA Developer CUDA历史版本下载地址&#xff1a;C…