LLM架构自注意力机制Transformers architecture Attention is all you need

使用Transformers架构构建大型语言模型显著提高了自然语言任务的性能,超过了之前的RNNs,并导致了再生能力的爆炸。
在这里插入图片描述

Transformers架构的力量在于其学习句子中所有单词的相关性和上下文的能力。不仅仅是您在这里看到的,与它的邻居每个词相邻,而是与句子中的每个其他词。将注意力权重应用于这些关系,以便模型学习每个词与输入中的其他词的相关性,无论它们在哪里。
在这里插入图片描述

这使得算法能够学习谁有这本书,谁可能有这本书,以及它是否与文档的更广泛的上下文相关。这些注意力权重在LLM训练期间学到,您将在本周晚些时候了解更多。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
这个图被称为注意力图,可以用来说明每个词与每个其他词之间的注意力权重。在这个风格化的例子中,您可以看到单词“book”与单词“teacher”和“student”强烈地连接或关注。
在这里插入图片描述

这被称为自注意力,这种跨整个输入学习注意力的能力显著地提高了模型编码语言的能力。
在这里插入图片描述

现在您已经看到了Transformers架构的一个关键属性,自注意力,让我们从高层次看看模型是如何工作的。这是一个简化的Transformers架构图,这样您可以从高层次关注这些过程发生的地方。Transformers架构分为两个不同的部分,编码器和解码器。
在这里插入图片描述

这些组件相互协作,并且它们有许多相似之处。此外,请注意,您在这里看到的图是从原始的“Attention is All You Need”论文中派生出来的。注意模型的输入是在底部,输出是在顶部,在可能的情况下,我们将尝试在整个课程中保持这一点。

现在,机器学习模型只是大型的统计计算器,它们使用数字而不是单词。因此,在将文本传递到模型进行处理之前,您必须首先对单词进行标记。简单地说,这将单词转换为数字,每个数字代表模型可以使用的所有可能单词的字典中的位置。您可以选择多种标记化方法。

例如,匹配两个完整单词的令牌ID,
在这里插入图片描述

或使用令牌ID表示单词的部分。
在这里插入图片描述

正如您在这里看到的。重要的是,一旦您选择了一个标记器来训练模型,您在生成文本时必须使用相同的标记器。现在您的输入表示为数字,您可以将其传递给嵌入层。这一层是一个可训练的向量嵌入空间,一个高维空间,其中每个令牌都表示为一个向量,并在该空间内占据一个唯一的位置。
在这里插入图片描述

词汇表中的每个令牌ID都与一个多维向量匹配,直觉是这些向量学会编码输入序列中单个令牌的含义和上下文。嵌入向量空间在自然语言处理中已经使用了一段时间,像Word2vec这样的上一代语言算法使用了这个概念。如果您不熟悉这个,不用担心。您将在整个课程中看到这方面的例子,本周末的阅读练习中还有一些链接到其他资源。

回顾样本序列,您可以看到在这个简单的情况下,每个单词都与一个令牌ID匹配,每个令牌都映射到一个向量。在原始的Transformers论文中,向量的大小实际上是512,所以比我们可以放到这个图像上的要大得多。
在这里插入图片描述

为了简单起见,如果您想象一个向量大小只有三个,您可以将单词绘制到一个三维空间中,并看到这些单词之间的关系。您现在可以看到如何关联嵌入空间中彼此靠近的单词,
在这里插入图片描述

以及如何计算单词之间的距离作为一个角度,
在这里插入图片描述

这使得模型具有数学上理解语言的能力。当您将令牌向量添加到编码器或解码器的基础时,您还添加了位置编码。
在这里插入图片描述

模型并行处理每个输入令牌。因此,通过添加位置编码,您保留了关于单词顺序的信息,并且不会丢失单词在句子中的位置的相关性。一旦您将输入令牌和位置编码相加,您就将结果向量传递给自注意力层。

在这里插入图片描述

在这里,模型分析输入序列中的令牌之间的关系。正如您之前看到的,这使得模型能够关注输入序列的不同部分,以更好地捕获单词之间的上下文依赖关系。在训练期间学到并存储在这些层中的自注意力权重反映了输入序列中每个单词与序列中所有其他单词的重要性。

在这里插入图片描述

但这不仅仅发生一次,Transformers架构实际上具有多头自注意力。这意味着多组自注意力权重或头部并行独立地学习。注意力层中包括的注意力头数因模型而异,但范围在12-100之间是常见的。
在这里插入图片描述

直觉是每个自注意力头将学习语言的不同方面。例如,一个头可能会看到我们句子中的人实体之间的关系。
在这里插入图片描述

而另一个头可能专注于句子的活动。
在这里插入图片描述

而另一个头可能专注于其他属性,例如单词是否押韵。
在这里插入图片描述

重要的是要注意,您不会提前指定注意力头将学习的语言方面。每个头的权重都是随机初始化的,只要有足够的训练数据和时间,每个头都会学习语言的不同方面。虽然一些注意力图很容易解释,就像这里讨论的例子,但其他的可能不是。

现在所有的注意力权重都已经应用到您的输入数据,输出通过一个完全连接的前馈网络进行处理。
在这里插入图片描述

这一层的输出是与每个令牌在分词器字典中的概率得分成比例的logits向量。

然后,您可以将这些logits传递给最终的softmax层,其中它们被标准化为每个单词的概率得分。这个输出包括词汇表中每个单词的概率,所以这里可能有成千上万的分数。
在这里插入图片描述

一个单一的令牌将有一个比其他所有令牌更高的分数。这是最有可能预测的令牌。但是,正如您在课程后面将看到的,您可以使用多种方法从这个概率向量中选择最终的选择。

参考

https://www.coursera.org/learn/generative-ai-with-llms/lecture/3AqWI/transformers-architecture

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/87997.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端界面设计

目录 1.兴趣展示网站1.效果2.核心代码展示3.源代码 2.优美的登录网页1.效果2.核心代码展示3.源代码 3.美女相册1.效果2.核心代码展示3.源代码 4.精美选项卡1.效果2.核心代码展示3.源代码 4. 自己写过的一些前端界面设计Demo整理。 1.兴趣展示网站 1.效果 2.核心代码展示 工程截…

vue3 基础知识

vue3创建一个项目 PS D:\code> npm init vuelatestVue.js - The Progressive JavaScript Framework√ Add TypeScript? ... No / Yes √ Add JSX Support? ... No / Yes √ Add Vue Router for Single Page Application development? ... No / Yes √ Add Pinia for sta…

day-24 代码随想录算法训练营(19)回溯part01

77.组合 思路一:回溯相当于枚举,所以我们遍历1-n的每一个数字,然后在遍历第i位的同时递归出第i1~n位的组合结果,跟树的形式相似。 如上图所示,当长度为k时,即退出递归可对遍历到第i位以及剩下位数与k进行比…

GEEMAP 基本操作(一)如何拉伸图像

图像拉伸是最基础的图像增强显示处理方法,主要用来改善图像显示的对比度,地物提取流程中往往首先要对图像进行拉伸处理。图像拉伸主要有三种方式:线性拉伸、直方图均衡化拉伸和直方图归一化拉伸。 GEE 中使用 .sldStyle() 的方法来进行图像的…

死锁的典型情况、产生的必要条件和解决方案

前言 死锁:多个线程同时被阻塞,他们中的一个或全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。 目录 前言 一、死锁的三种典型情况 (一)一个线程一把锁 (二)…

redis常用五种数据类型详解

目录 前言: string 相关命令 内部编码 应用场景 hash 相关命令 内部编码 应用场景 list 相关命令 内部编码 应用场景 set 相关命令 内部编码 应用场景 Zset 相关命令 内部编码 应用场景 渐进式遍历 前言: redis有多种数据类型&…

CSS 实现页面底部加载中与加载完毕效果

效果图 实现代码 <view class"bottom-load-tip"><view class"line-tip"></view><view class"loading-animation" v-if"!lastPage"></view><view>{{ lastPage ? "没有更多了" : "…

自动化测试工具:Airtest入门教程

目录 1.什么是Airtest&#xff1f; 2.AirtestIDE下载安装 3.如何开始使用 4.Airtest入门特例教程 5.总结 1.什么是Airtest&#xff1f; Airtest是一款基于 Python 的、跨平台的UI自动化测试框架。因为它基于 图像识别 的原理&#xff0c;所以适用于所有 Android、 iOS和 …

边写代码边学习之Bidirectional LSTM

1. 什么是Bidirectional LSTM 双向 LSTM (BiLSTM) 是一种主要用于自然语言处理的循环神经网络。 与标准 LSTM 不同&#xff0c;输入是双向流动的&#xff0c;并且它能够利用双方的信息。 它也是一个强大的工具&#xff0c;可以在序列的两个方向上对单词和短语之间的顺序依赖…

Matlab绘制灰度直方图

直方图是根据灰图像绘制的&#xff0c;而不是彩色图像通。查看图像直方图时候&#xff0c;需要先确定图片是否为灰度图&#xff0c;使用MATLAB2019查看图片是否是灰度图片&#xff0c;在读取图片后在MATLAB界面的工作区会显示读取的图像矩阵&#xff0c;如果是&#xff0c;那么…

Cookie 和 Session 的工作流程

目录 一、Cookie是什么&#xff1f; 二、Session是什么? 三、Cookie的工作流程 四、Session的工作流程 五、Session和Cookie的区别和联系 一、Cookie是什么&#xff1f; Cookie是一种在网站和用户之间交换信息的机制。它是由Web服务器发送给用户浏览器的小型文本文件&#xff…

2023国赛数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…

STM32--USART串口

文章目录 通信接口串口通信硬件电路电平标准参数时序 USART主要特性框图 数据帧发送器 波特率发生器SWART串口发送与接收工程串口收发数据包 通信接口 通信接口是指连接中央处理器&#xff08;CPU&#xff09;和标准通信子系统之间的接口&#xff0c;用于实现数据和控制信息在不…

GNN学习笔记

GNN 持续更新 实践程序放在了虚拟机里conda中NS环境里了 b站课程跳转------->>>>> 【不愧是公认最好的【图神经网络GNN/GCN教程】&#xff0c;从基础到进阶再到实战&#xff0c;一个合集全部到位&#xff01;-人工智能/神经网络/图神经网络/深度学习。】 https…

ubuntu 20.04 安装 高版本cuda 11.7 和 cudnn最新版

一、安装显卡驱动 参考另一篇文章&#xff1a;Ubuntu20.04安装Nvidia显卡驱动教程_ytusdc的博客-CSDN博客 二、安装CUDA 英伟达官网&#xff08;最新版&#xff09;&#xff1a;CUDA Toolkit 12.2 Update 1 Downloads | NVIDIA Developer CUDA历史版本下载地址&#xff1a;C…

vue3——递归组件的使用

该文章是在学习 小满vue3 课程的随堂记录示例均采用 <script setup>&#xff0c;且包含 typescript 的基础用法 一、使用场景 递归组件 的使用场景&#xff0c;如 无限级的菜单 &#xff0c;接下来就用菜单的例子来学习 二、具体使用 先把菜单的基础内容写出来再说 父…

STM32CubeMX配置STM32G0 Standby模式停止IWDG(HAL库开发)

1.打开STM32CubeMX选择好对应的芯片&#xff0c;打开IWDG 2.打开串口1进行调试 3.配置好时钟 4.写好项目名称&#xff0c;选好开发环境&#xff0c;最后获取代码。 5.打开工程&#xff0c;点击魔术棒&#xff0c;勾选Use Micro LIB 6.修改main.c #include "main.h"…

网络互联与互联网 - TCP 协议详解

文章目录 1 概述2 TCP 传输控制协议2.1 报文格式2.2 三次握手&#xff0c;建立连接2.3 四次挥手&#xff0c;释放连接2.4 四种拥塞控制 3 扩展3.1 实验演示3.2 网工软考 1 概述 在 TCP/IP 协议簇 中有两个传输协议 TCP&#xff1a;Transmission Control Protocol&#xff0c;传…

视频汇聚/视频云存储/视频监控管理平台EasyCVR提升网络稳定小tips来啦!

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…

vue+file-saver+xlsx+htmlToPdf+jspdf实现本地导出PDF和Excel

页面效果如下&#xff08;echarts图表按需添加&#xff0c;以下代码中没有&#xff09; 1、安装插件 npm install xlsx --save npm install file-saver --save npm install html2canvas --save npm install jspdf --save2、main.js引入html2canvas import htmlToPdf from …