智谱清影 -CogVideoX-2b-部署与使用,带你揭秘生成6s视频的极致体验!

在这里插入图片描述

文章目录

    • 1 效果展示
    • 2 CogVideoX 前世今生
    • 3 CogVideoX 部署实践流程
      • 3.1 创建丹摩实例
      • 3.2 配置环境和依赖
      • 3.3 模型与配置文件
      • 3.4 运行
      • 4 遇到问题

1 效果展示

A street artist, clad in a worn-out denim jacket and a colorful bandana, stands before a vast concrete wall in the heart, holding a can of spray paint, spray-painting a colorful bird on a mottled wall.

CogVideoX-6秒视频

2 CogVideoX 前世今生

CogVideoX 的出现就像在视频生成领域的一次重大飞跃。

过去的技术常常在效率和质量之间挣扎,而现在,它的 3D 变分自编码器能将视频数据压缩至原来的 2%,大幅降低资源消耗,并保持视频帧的连贯性。

引入的 3D 旋转位置编码技术更是让每个瞬间在时间中自然流动,仿佛为视频注入了生命。

智谱 AI 的端到端视频理解模型,使得用户的指令能被精准解析,生成的视频内容丰富且紧密相关,这项创新为创作者提供了更大的自由度。
在这里插入图片描述

这一创新极大地增强了 CogVideoX 对文本的理解和对用户指令的遵循能力,确保了生成的视频不仅与用户的输入高度相关,而且能够处理超长且复杂的文本提示。

CogVideoX 是技术上的一个新起点,期待它未来的发展,必将为我们带来更多惊喜。

  • CogVideoX代码仓库:https://github.com/THUDM/CogVideo
  • 模型下载:https://huggingface.co/THUDM/CogVideoX-2b
  • 技术报告:https://github.com/THUDM/CogVideo/blob/main/resources/CogVideoX.pdf
  • 丹摩智算平台:https://damodel.com/register?source=C4FB0342

3 CogVideoX 部署实践流程

本次实践流程在丹摩服务器上进行部署和初步使用 CogVideoX。

3.1 创建丹摩实例

(1)进入控制台,选择 GPU 云实例,点击创建实例。(实名认证有抵扣卷)

在这里插入图片描述

(2)CogVideoX 在 FP-16 精度下的推理至少需 18GB 显存,微调则需要 40GB 显存 。

(2.1)选择L40S 显卡(推荐)或者4090 显卡,硬盘可以选择默认的 100GB 系统盘和 50GB 数据盘。

在这里插入图片描述

(2.2)镜像选择 PyTorch2.3.0、Ubuntu-22.04,CUDA12.1 镜像。

在这里插入图片描述

(2.3)创建登录实例。(点击创建密钥对,输入个名称即可创建)

在这里插入图片描述

(2.4)实例创建成功。

在这里插入图片描述

3.2 配置环境和依赖

丹摩平台已预置了调试好的代码库,可开箱即用。

(1)进入 JupyterLab 后,打开终端,首先拉取 CogVideo 代码的仓库。

wget http://file.s3/damodel-openfile/CogVideoX/CogVideo-main.tar

在这里插入图片描述

(2) 下载完成后解压缩CogVideo-main.tar,完成后进入 CogVideo-main 文件夹,输入安装对应依赖。
在这里插入图片描述

(3)依赖安装好后,可以在终端输入 python,进入python环境。

输入代码进行测试:

import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video

没有报错就说明依赖安装成功!输入quit()可退出 python。

在这里插入图片描述

3.3 模型与配置文件

除了配置代码文件和项目依赖,还需要上传 CogVideoX 模型文件和对应的配置文件。

(1)平台已为您预置了 CogVideoX 模型,您可内网高速下载。

cd /root/workspace
wget http://file.s3/damodel-openfile/CogVideoX/CogVideoX-2b.tar

在这里插入图片描述

(2)下载完成后解压缩CogVideoX-2b.tar

tar -xf CogVideoX-2b.tar

解压后的效果图:

在这里插入图片描述

3.4 运行

(1)进入CogVideo-main文件夹,运行test.py文件。

cd /root/workspace/CogVideo-main
python test.py

在这里插入图片描述

(2)test.py 代码内容如下,主要使用diffusers库中的CogVideoXPipeline模型,加载了一个预训练的 CogVideo 模型,然后根据一个详细的文本描述(prompt),生成对应视频。

import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video

# prompt里写自定义想要生成的视频内容
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."

pipe = CogVideoXPipeline.from_pretrained(
    "/root/workspace/CogVideoX-2b", # 这里填CogVideo模型存放的位置,此处是放在了数据盘中
    torch_dtype=torch.float16
).to("cuda")

# 参数do_classifier_free_guidance设置为True可以启用无分类器指导,增强生成内容一致性和多样性
# num_videos_per_prompt控制每个prompt想要生成的视频数量
# max_sequence_length控制输入序列的最大长度
prompt_embeds, _ = pipe.encode_prompt(
    prompt=prompt,
    do_classifier_free_guidance=True,
    num_videos_per_prompt=1,
    max_sequence_length=226,
    device="cuda",
    dtype=torch.float16,
)

video = pipe(
    num_inference_steps=50,
    guidance_scale=6,
    prompt_embeds=prompt_embeds,
).frames[0]

export_to_video(video, "output.mp4", fps=8)

(3)运行成功后,可以在 CogVideo-main 文件夹中找到对应 prompt 生成的 output.mp4 视频。

在这里插入图片描述

(4)模型官方也提供了 webUIDemo,进入CogVideo-main文件夹,运行gradio_demo.py文件。

cd /root/workspace/CogVideo-main
python gradio_demo.py

在这里插入图片描述

(5)通过丹摩平台提供的端口映射能力,把内网端口映射到公网,进入GPU 云实例页面,点击操作-更多-访问控制。

在这里插入图片描述

(6)点击添加端口,添加7870端口。

在这里插入图片描述

(7)添加成功后,通过访问链接即可访问到刚刚启动的 gradio 页面。

在这里插入图片描述

4 遇到问题

(1)端口号被占用。

安装 lsof:

apt-get update
apt-get install lsof
# 查占用端口
lsof -i :7870
# 杀进程
kill -9 <PID>

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/879692.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

论文速递!时序预测!DCSDNet:双卷积季节性分解网络,应用于天然气消费预测过程

本期推文将介绍一种新的时序预测方法:双卷积季节性分解网络&#xff08;Dual Convolution withSeasonal Decomposition Network, DCSDNet&#xff09;在天然气消费预测的应用&#xff0c;这项研究发表于《Applied Energy》期刊。 针对天然气消费的多重季节性和非规律性&#x…

C++ —— 关于vector

目录 链接 1. vector的定义 2. vector的构造 3. vector 的遍历 4. vector 的扩容机制 5. vector 的空间接口 5.1 resize 接口 5.2 push_back 5.3 insert 5.4 erase 5.5 流插入与流提取 vector 并不支持流插入与流提取&#xff0c;但是可以自己设计&#xff0c;更…

标准库标头 <barrier>(C++20)学习

此头文件是线程支持库的一部分。 类模板 std::barrier 提供一种线程协调机制&#xff0c;阻塞已知大小的线程组直至该组中的所有线程到达该屏障。不同于 std::latch&#xff0c;屏障是可重用的&#xff1a;一旦到达的线程组被解除阻塞&#xff0c;即可重用同一屏障。与 std::l…

基于SpringBoot项目实现Docker容器化部署

将Spring Boot项目部署到Docker容器中的涉及几个主要步骤&#xff1a; 准备Docker镜像 首先&#xff0c;需要选择一个基础镜像&#xff0c;通常是包含Java运行时环境的镜像&#xff0c;例如OpenJDK。可以从Docker Hub或其他镜像仓库中获取这些镜像。接下来&#xff0c;需要在…

C++库文件移植到QT中一直出错

&#x1f3c6;本文收录于《CSDN问答解惑-专业版》专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收…

【软考】数据字典(DD)

目录 1. 说明2. 数据字典的内容2.1 说明2.2 数据流条目2.3 数据存储条目2.4 数据项条目2.5 基本加工条目 3. 数据词典管理4. 加工逻辑的描述4.1 说明4.2 结构化语言4.3 判定表4.3 判定树 5. 例题5.1 例题1 1. 说明 1.数据流图描述了系统的分解&#xff0c;但没有对图中各成分进…

一个基于 laravel 和 amis 开发的后台框架, 友好的组件使用体验,可轻松实现复杂页面(附源码)

前言 随着互联网应用的发展&#xff0c;后台管理系统的复杂度不断增加&#xff0c;对于开发者而言&#xff0c;既要系统的功能完备&#xff0c;又要追求开发效率的提升。然而&#xff0c;传统的开发方式往往会导致大量的重复劳动&#xff0c;尤其是在构建复杂的管理页面时。有…

【移动端开发】“明日头条APP”

文章目录 1 系统概述1.1研究背景1.2研究意义 2 系统设计2.1 关键技术2.2 系统设计2.2.1 系统功能模块2.2.2 数据库设计 3 系统实现3.1 数据模型3.1.1 NewsURL3.1.2 NewsType3.1.3 NewsInfo 3.2 数据库操作3.2.1 DBOpenHelper3.2.2 DBManager 3.3 适配器类3.3.1 AddItem3.3.2 In…

Redhat 7,8,9系(复刻系列) 一键部署Oracle19c rpm

Oracle19c前言 Oracle 19c 是甲骨文公司推出的一款企业级关系数据库管理系统,它带来了许多新的功能和改进,使得数据库管理更加高效、安全和可靠。以下是关于 Oracle 19c 的详细介绍: 主要新特性 多租户架构:支持多租户架构,允许多个独立的数据库实例在同一个物理服务器上…

【机器学习】9 ——最大熵模型的直观理解

机器学习9 ——最大熵模型的直观理解 文章目录 机器学习9 ——最大熵模型的直观理解前奏例子硬币垃圾邮件代码 前奏 【机器学习】6 ——最大熵模型 例子 硬币 假设我们有一枚硬币&#xff0c;可能是公平的&#xff0c;也可能是不公平的。我们的任务是估计硬币的正反面出现的…

通过Python代码发送量化交易信号邮件通知

量化交易利用数学模型和计算机算法来分析市场数据,并生成交易信号,本文将介绍如何使用Python编写一个简单的脚本,通过发送邮件通知量化交易信号。 开启SMTP服务 首先要在发件箱的邮件设置中,将POP3/SMPT服务开启,记录下授权密码,在本地可通过此密码登录,注意有效期和保…

微信小程序页面制作——婚礼邀请函(含代码)

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

【网络】TCP/IP 五层网络模型:网络层

最核心的就是 IP 协议&#xff0c;是一个相当复杂的协议 TCP 详细展开讲解&#xff0c;是因为 TCP 确实在开发中非常关键&#xff0c;经常用到&#xff0c;IP 则不同&#xff0c;和普通程序猿联系比较浅。和专门开发网络的程序猿联系比较紧密&#xff08;开发路由器&#xff0…

3款免费的GPT类工具

前言 随着科技的飞速发展&#xff0c;人工智能&#xff08;AI&#xff09;的崛起与发展已经成为我们生活中不可或缺的一部分。它的出现彻底改变了我们与世界互动的方式&#xff0c;并为各行各业带来了前所未有的便利。 一、Kimi 网址&#xff1a;点我前往 国产AI模型Kimi是一…

neo4j安装启动教程+对应的jdk配置

参考这位博主的视频教程&#xff1a;neo4j社区windows版下载 一、官网下载neo4j的安装包 &#xff08;1&#xff09;官网下载页面 &#xff08;2&#xff09;上一步 【download】之后&#xff0c;会自动下载&#xff0c;如果没有&#xff0c;点击【here】 这里可以看到一行字…

Qwen 2.5:阿里巴巴集团的新一代大型语言模型

Qwen 2.5&#xff1a;阿里巴巴集团的新一代大型语言模型 摘要&#xff1a; 在人工智能领域&#xff0c;大型语言模型&#xff08;LLMs&#xff09;的发展日新月异&#xff0c;它们在自然语言处理&#xff08;NLP&#xff09;和多模态任务中扮演着越来越重要的角色。阿里巴巴集…

获取参数

获取querystring参数 querystring 指的是URL中 ? 后面携带的参数&#xff0c;例如&#xff1a;http://127.0.0.1:9090/web?query杨超越。 获取请求的querystring参数的方法如下&#xff1a; 方法1&#xff1a; Query package main// querystringimport ("github.com/…

有毒有害气体检测仪的应用和性能_鼎跃安全

随着现代工业的不断发展和扩张&#xff0c;越来越多的企业涉及到有毒有害气体的生产、使用和处理。工业规模的扩大导致有毒有害气体的排放量增加&#xff0c;同时也增加了气体泄漏的风险。在发生火灾、爆炸或危险化学品泄漏等紧急事件时&#xff0c;救援人员需要迅速了解现场的…

python+flask+mongodb+vue撸一个实时监控linux服务资源的网站

用pythonflaskmongodbvue写一个监控linux服务资源实时使用率的页面网站&#xff0c;并每30秒定时请求&#xff0c;把Linux数据保存数据到mongodb数据库中&#xff0c;监控的linux的资源有&#xff1a;cup、内存、网络带宽、mysql慢查询、redis、系统平均负载、磁盘使用率等&…

百度Android IM SDK组件能力建设及应用

作者 | 星途 导读 移动互联网时代&#xff0c;随着社交媒体、移动支付、线上购物等行业的快速发展&#xff0c;对即时通讯功能的需求不断增加。对于各APP而言&#xff0c;接入IM SDK&#xff08;即时通讯软件开发工具包&#xff09;能够大大降低开发成本、提高开发效率&#…