网络穿透:TCP 打洞、UDP 打洞与 UPnP

在现代网络中,很多设备都处于 NAT(网络地址转换)或防火墙后面,这使得直接访问这些设备变得困难。在这种情况下,网络穿透技术就显得非常重要。本文将介绍三种常用的网络穿透技术:TCP 打洞、UDP 打洞和 UPnP。
在这里插入图片描述

一、TCP 打洞

1.1 什么是 TCP 打洞?

TCP 打洞(TCP Hole Punching)是一种使 NAT 后的两个客户端通过第三方服务器建立直接连接的方法。NAT 通常会阻止外部主机直接与内部主机通信,因此需要借助外部服务器来协调连接。

1.2 工作原理

  1. 建立与中继服务器的连接:两个 NAT 后的客户端 A 和 B 先分别与公共服务器 S 建立连接。
  2. 交换外部地址:服务器 S 了解 A 和 B 的外部 IP 和端口,并将这些信息发送给彼此。
  3. 尝试直接连接:A 和 B 分别尝试使用彼此的外部 IP 和端口进行连接,如果两端的 NAT 设备允许,则连接成功。

在这里插入图片描述

1.3 示例代码

以下是一个简单的 Python 示例,演示了通过 TCP 打洞进行连接的过程。

import socket

# Server listens for incoming connections and exchanges client information
def server():
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.bind(('0.0.0.0', 12345))
    s.listen(2)
    
    print("Server waiting for connections...")
    conn_a, addr_a = s.accept()
    print(f"Client A connected: {addr_a}")
    
    conn_b, addr_b = s.accept()
    print(f"Client B connected: {addr_b}")
    
    # Exchange addresses
    conn_a.send(f"{addr_b[0]}:{addr_b[1]}".encode())
    conn_b.send(f"{addr_a[0]}:{addr_a[1]}".encode())
    
    conn_a.close()
    conn_b.close()
    s.close()

# Clients attempt to connect to each other using exchanged information
def client():
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.connect(('server_ip', 12345))  # Replace 'server_ip' with the actual IP of the server
    
    peer_info = s.recv(1024).decode()
    peer_ip, peer_port = peer_info.split(':')
    
    # Attempt to connect to peer
    try:
        peer_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        peer_socket.connect((peer_ip, int(peer_port)))
        print("Connected to peer!")
    except Exception as e:
        print(f"Failed to connect to peer: {e}")
    
    s.close()

二、UDP 打洞

2.1 什么是 UDP 打洞?

UDP 打洞(UDP Hole Punching)与 TCP 打洞类似,是一种让处于 NAT 后的两台主机通过第三方服务器建立直接 UDP 连接的技术。与 TCP 不同的是,UDP 是无连接的协议,允许 NAT 主机更容易接受来自外部的连接请求。

2.2 工作原理

  1. 与服务器通信:两台客户端 A 和 B 分别与公共服务器 S 进行通信,服务器记录它们的外部 IP 和端口。
  2. 交换地址:服务器将 A 和 B 的外部 IP 和端口互相传递。
  3. 直接发送 UDP 数据包:A 和 B 尝试通过彼此的外部地址直接发送 UDP 数据包,利用 NAT 会话表进行数据传输。
    在这里插入图片描述

2.3 示例代码

import socket

# UDP Server to exchange addresses
def udp_server():
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    s.bind(('0.0.0.0', 12345))
    
    print("Server waiting for messages...")
    data_a, addr_a = s.recvfrom(1024)
    print(f"Received from A: {addr_a}")
    
    data_b, addr_b = s.recvfrom(1024)
    print(f"Received from B: {addr_b}")
    
    # Exchange addresses
    s.sendto(f"{addr_b[0]}:{addr_b[1]}".encode(), addr_a)
    s.sendto(f"{addr_a[0]}:{addr_a[1]}".encode(), addr_b)

# UDP Client to communicate through hole punching
def udp_client():
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    s.sendto(b'Hello from client', ('server_ip', 12345))  # Replace 'server_ip' with actual server IP
    
    peer_info, _ = s.recvfrom(1024)
    peer_ip, peer_port = peer_info.decode().split(':')
    
    # Send message to peer
    s.sendto(b'Hello peer!', (peer_ip, int(peer_port)))
    
    try:
        response, _ = s.recvfrom(1024)
        print(f"Received from peer: {response}")
    except socket.timeout:
        print("No response from peer")
    
    s.close()

三、UPnP(通用即插即用)

3.1 什么是 UPnP?

UPnP(Universal Plug and Play,通用即插即用)是一种网络协议,允许设备自动发现和与网络中的其他设备进行通信。在 NAT 环境下,UPnP 可以自动打开路由器的端口,从而允许外部设备访问位于内网中的设备。

UPnP 主要用于家庭网络和小型局域网,它通过设备的自动配置来简化网络中的设备通信过程。

3.2 工作原理

  1. 设备发现:客户端设备通过发送 SSDP(简单服务发现协议)请求,查找网络中的 UPnP 设备。
  2. 获取路由器的设备描述:通过 SSDP 发现的设备提供一个设备描述 XML 文件,描述其功能和端点。
  3. 请求端口映射:客户端通过向路由器发送请求,要求映射一个外部端口到内网设备的特定端口。
    在这里插入图片描述

3.3 示例代码

可以使用第三方库 miniupnpc 来实现 UPnP 端口映射,以下是一个 Python 示例。

pip install miniupnpc
import miniupnpc

def upnp_port_mapping():
    upnp = miniupnpc.UPnP()
    upnp.discoverdelay = 200
    upnp.discover()  # Discover UPnP devices
    upnp.selectigd()  # Select Internet Gateway Device
    
    external_port = 12345
    internal_port = 54321
    local_ip = upnp.lanaddr  # Get local IP address
    
    # Add port mapping (TCP)
    upnp.addportmapping(external_port, 'TCP', local_ip, internal_port, 'Test Port Mapping', '')
    
    print(f"Port {external_port} mapped to {local_ip}:{internal_port} (TCP)")
    
    # Optionally, remove the port mapping
    # upnp.deleteportmapping(external_port, 'TCP')
    
upnp_port_mapping()

四、总结

  • TCP 打洞:通过第三方服务器交换外部地址,尝试建立直接的 TCP 连接。
  • UDP 打洞:类似 TCP 打洞,但使用 UDP 协议,更容易成功。
  • UPnP:通过自动化的端口映射,使内网设备更易于被外部设备访问。

这三种技术在 P2P 应用中非常重要,特别是在 NAT 或防火墙环境下,它们能够显著提高连接的成功率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/876334.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SQL Server数据库简单的事务日志备份恢复

模拟数据库备份恢复过程 1.基础操作 1.创建TestDB数据库,并添加数据 USE [master] GO CREATE DATABASE TestDB CONTAINMENT NONE ON PRIMARY ( NAME NTestDB, FILENAME ND:\TestDB.mdf , SIZE 8192KB , MAXSIZE UNLIMITED, FILEGROWTH 65536KB ) LOG ON ( …

什么是API网关(API Gateway)?

1. 什么是API网关(API Gateway)? 在微服务体系结构中,客户端可能与多个前端服务进行交互。 API 网关位于客户端与服务之间。 它充当反向代理,将来自客户端的请求路由到服务。 它还可以执行各种横切任务,例…

GHOST重装后DEF盘丢失:深度解析与高效数据恢复方案

在数字信息爆炸的时代,数据安全与恢复成为了每个计算机用户必须面对的重要课题。GHOST作为系统备份与恢复领域的佼佼者,以其快速、便捷的特点赢得了广泛的用户基础。然而,在使用GHOST进行系统重装的过程中,不少用户遭遇了DEF盘&am…

【信创】Linux上图形化多ping工具--gping的编译安装与打包 _ 统信 _ 麒麟 _ 方德

原文链接:【信创】图形化多ping工具gping的编译安装与打包 | 统信 | 麒麟 | 方德 Hello,大家好啊!今天给大家带来一篇关于在Linux操作系统上使用gping的文章。gping是一款非常实用的命令行工具,它将传统的ping命令进行了可视化改进…

【大数据方案】智慧大数据平台总体建设方案书(word原件)

第1章 总体说明 1.1 建设背景 1.2 建设目标 1.3 项目建设主要内容 1.4 设计原则 第2章 对项目的理解 2.1 现状分析 2.2 业务需求分析 2.3 功能需求分析 第3章 大数据平台建设方案 3.1 大数据平台总体设计 3.2 大数据平台功能设计 3.3 平台应用 第4章 政策标准保障体系 4.1 政策…

Java设计模式—面向对象设计原则(五) ----->迪米特法则(DP) (完整详解,附有代码+案例)

文章目录 3.5 迪米特法则(DP)3.5.1 概述3.5.2 案例 3.5 迪米特法则(DP) 迪米特法则:Demeter Principle,简称DP 3.5.1 概述 只和你的直接朋友交谈,不跟“陌生人”说话(Talk only to your immediate friends and not to stranger…

【开放词汇检测】MM-Grounding-DINO论文翻译

摘要 Grounding-DINO 是一种先进的开放式检测模型,能够处理包括开放词汇检测(Open-Vocabulary Detection,OVD)、短语定位(Phrase Grounding,PG)和指代表达理解(Referring Expressio…

人脸防伪检测系统源码分享

人脸防伪检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vis…

(c++)用取模符%、除运算判断是否是某个数的倍数,判断个位十位是否有某个数

结果易懂&#xff0c;但凡和7有关&#xff0c;都输出相应的关系。关系分为三种&#xff0c;7的倍数&#xff0c;十位是7&#xff0c;个位是7 #include<iostream>using namespace std;int main() {for (int num 1; num < 100; num){if (num % 7 0)//是7的倍数{cout …

Android 13 固定systemUI的状态栏为黑底白字,不能被系统应用或者三方应用修改

目录 一.背景 二.思路 三.代码流程 1.colos.xml自定义颜色 2.设置状态栏的背景颜色 3.对View进行操作 ①.对Clock(状态栏左侧的数字时钟)进行操作 ②.对电池(BatteryMeterView)进行操作 4.锁屏状态栏 5.patch汇总 一.背景 客户需求将状态栏固定成黑底白字,并且不能让系…

Unity教程(十五)敌人战斗状态的实现

Unity开发2D类银河恶魔城游戏学习笔记 Unity教程&#xff08;零&#xff09;Unity和VS的使用相关内容 Unity教程&#xff08;一&#xff09;开始学习状态机 Unity教程&#xff08;二&#xff09;角色移动的实现 Unity教程&#xff08;三&#xff09;角色跳跃的实现 Unity教程&…

Pytest配置文件pytest.ini如何编写生成日志文件?

1、新建pytest.ini文件 [pytest] log_clitrue log_leveLNOTSET log_format %(asctime)s %(levelname)s %(message)s %(filename)s %(funcName)s %(lineno)d log_date_format %Y-%m-%d %H:%M:%Slog_file ./logdata/log.log log_file_level info log_file_format %(asctime…

【6大设计原则】迪米特法则:解密软件设计中的“最少知识原则”

引言 在软件设计中&#xff0c;设计原则是指导我们构建高质量、可维护系统的基石。迪米特法则&#xff08;Law of Demeter&#xff0c;LoD&#xff09;&#xff0c;也被称为“最少知识原则”&#xff0c;是六大设计原则之一。它强调对象之间的松耦合&#xff0c;确保系统的各个…

爬虫代理API的全面解析:让数据抓取更高效

在大数据时代&#xff0c;网络爬虫已经成为收集和分析数据的重要工具。然而&#xff0c;频繁的请求会导致IP被封禁&#xff0c;这时候爬虫代理API就显得尤为重要。本文将详细介绍爬虫代理API的作用、优势及如何使用&#xff0c;帮助你更高效地进行数据抓取。 什么是爬虫代理AP…

注解(Java程序的一种特殊“注释”,用于工具处理的标注)

1.使用注解 a.含义 i.注解是放在类&#xff0c;字段&#xff0c;方法&#xff0c;参数前的一种特殊“注释”。 ii.注释会被编译器直接忽略&#xff0c;注解则可以被编译器打包带进class文件&#xff0c;因此&#xff0c;注解是一种用于标注的“元数据”。 iii…

设计模式之建造者模式(通俗易懂--代码辅助理解【Java版】)

文章目录 设计模式概述1、建造者模式2、建造者模式使用场景3、优点4、缺点5、主要角色6、代码示例&#xff1a;1&#xff09;实现要求2&#xff09;UML图3)实现步骤&#xff1a;1&#xff09;创建一个表示食物条目和食物包装的接口2&#xff09;创建实现Packing接口的实体类3&a…

NeMo Curator 整理用于 LLM 参数高效微调的自定义数据集

目录 概述 预备知识 定义自定义文档构建器 下载数据集 解析和迭代数据集 将数据集写入 JSONL 格式 使用文档构建器加载数据集 使用现有工具统一 Unicode 格式 设计自定义数据集过滤器 编辑所有个人识别信息 添加指令提示 整合管线 概述 出于演示目的&#xff0c;本…

QXml 使用方法

VS2019 QT 编译工具链问题解决 使用winqtdeploy.exe 打包环境就可以正常运行&#xff0c;缺少某一个运行库引起的 简易使用python脚本编译运行 Python3 中的 slots 和 QT 中的 slots 宏定义重复, 放在不同的文件中进行调用可以避免 还是比较习惯从源码包引入&#xff08;方便定…

相机光学(三十七)——自动对焦原理

1.自动对焦的三种方式 目前在手机上采用的自动对焦系统包括反差对焦、相位对焦和激光对焦三种方案&#xff0c;下面我们来看一下它们的工作原理和相互之间的区别是什么。 1.1反差对焦【CDAF】- Contrast Detection Auto Focus 反差对焦是目前普及率最高、使用最广泛、成本相对…

哈希表、算法

哈希表 hash&#xff1a; 在编程和数据结构中&#xff0c;"hash" 通常指的是哈希函数&#xff0c;它是一种算法&#xff0c;用于将数据&#xff08;通常是字符 串&#xff09;映射到一个固定大小的数字&#xff08;哈希值&#xff09;。哈希函数在哈希表中尤为重要…