基于matlab交通标志识别系统用的APP designer设计的gui界面 交互原理:bp神经网络-训练好图像处理有灰度化-二值化-颜色区域定位识别

基于MATLAB的交通标志识别系统是一个实用的工具,用于识别道路交通标志。该系统结合了图像处理技术和BP神经网络模型,可以在给定的图像中定位并识别交通标志。通过使用MATLAB的App Designer工具,系统还提供了一个交互式的图形用户界面(GUI),使用户能够轻松上传图片并查看识别结果。以下是关于这一系统的详细介绍及其实现的关键代码示例。

项目介绍

本项目旨在开发一个基于MATLAB的交通标志识别系统,该系统可以自动检测并识别输入图像中的交通标志。系统的主要功能包括图像预处理(灰度化、二值化)、颜色区域定位和识别。此外,系统还通过App Designer构建了一个用户友好的GUI界面,使用户能够方便地与系统交互。

关键功能

  1. 图像预处理

    • 灰度化:将彩色图像转换为灰度图像,减少计算复杂度。
    • 二值化:通过阈值处理将图像转换为黑白图像,突出目标区域。
  2. 颜色区域定位

    • 利用形态学操作(如膨胀、腐蚀)和连通域分析来定位图像中的交通标志区域。
  3. 交通标志识别

    • 使用预先训练好的BP神经网络模型识别定位到的交通标志。
  4. 用户界面

    • 通过MATLAB的App Designer构建GUI,用户可以上传图片并查看识别结果。

技术栈

  • 图像处理:MATLAB内置的图像处理工具箱。
  • 神经网络模型:BP神经网络模型。
  • 图形用户界面:MATLAB的App Designer。

关键代码示例

以下是一个基于MATLAB的交通标志识别系统的简化代码示例,包括图像预处理、颜色区域定位、BP神经网络识别及GUI界面的基本实现。

1. 读取图像
1% 读取输入图像
2img = imread('path_to_traffic_sign.jpg');
3imshow(img);
4title('Original Image');
2. 图像预处理
1% 转换为灰度图像
2grayImg = rgb2gray(img);
3
4% 二值化
5threshold = graythresh(grayImg);  % 自动计算阈值
6binaryImg = imbinarize(grayImg, threshold);
7
8% 显示预处理后的图像
9figure;
10imshow(binaryImg);
11title('Binary Image');
3. 颜色区域定位
1% 形态学操作
2se = strel('disk', 5);  % 定义结构元素
3morphImg = imclose(binaryImg, se);  % 闭运算
4
5% 查找连通域
6[BW, numObjects] = bwlabel(morphImg);
7props = regionprops(BW, 'BoundingBox', 'Area');
8
9% 筛选交通标志候选区域
10trafficSignCandidates = [];
11for k = 1:length(props)
12    area = props(k).Area;
13    if area > 1000 && area < 10000  % 调整面积范围以适应不同大小的交通标志
14        trafficSignCandidates = [trafficSignCandidates; props(k).BoundingBox];
15    end
16end
17
18% 绘制候选区域
19figure;
20imshow(img);
21hold on;
22for k = 1:size(trafficSignCandidates, 1)
23    rectangle('Position', trafficSignCandidates(k,:), 'EdgeColor', 'r', 'LineWidth', 2);
24end
25hold off;
26title('Detected Traffic Signs');
4. 交通标志识别
1% 加载训练好的BP神经网络模型
2net = load('path_to_bp_network.mat');  % 假设模型保存为.mat文件
3
4% 识别交通标志
5recognizedSigns = [];
6for k = 1:size(trafficSignCandidates, 1)
7    signImg = imcrop(grayImg, trafficSignCandidates(k,:));  % 提取交通标志区域
8    signImg = imresize(signImg, [32 32]);  % 调整为模型输入尺寸
9    
10    % 预处理图像
11    signImg = double(signImg) / 255;
12    signImg = signImg(:);
13    
14    % 使用BP神经网络进行识别
15    output = net(signImg');
16    [~, index] = max(output);
17    
18    recognizedSigns = [recognizedSigns; index];
19end
20
21% 显示识别结果
22disp(['Recognized Traffic Signs: ' num2str(recognizedSigns)]);
5. 用户界面

使用MATLAB的App Designer构建一个简单的GUI,用户可以上传图片并查看识别结果。

1% 创建一个新的App Designer应用程序
2app = uifigure;
3
4% 添加一个按钮用于上传图片
5uploadButton = uibutton(app, 'push', 'Text', 'Upload Image', 'Position', [20 20 100 30], 'ButtonPushedFcn', @uploadImage);
6
7% 添加一个文本框用于显示识别结果
8resultLabel = uilabel(app, 'Text', '', 'Position', [150 20 200 30]);
9
10% 上传图片的回调函数
11function uploadImage(src, event)
12    [filename, pathname] = uigetfile({'*.jpg;*.png;*.bmp', 'Image Files'}, 'Select an Image');
13    if isequal(filename, 0)
14        disp('User selected Cancel');
15        return;
16    else
17        fullFileName = fullfile(pathname, filename);
18        img = imread(fullFileName);
19        imshow(img, 'Parent', app);
20        
21        % 调用交通标志识别函数
22        [recognizedSigns] = recognizeTrafficSigns(img);
23        
24        % 更新结果显示
25        resultLabel.Text = ['Recognized Traffic Signs: ' num2str(recognizedSigns)];
26    end
27end
28
29% 交通标志识别函数
30function [recognizedSigns] = recognizeTrafficSigns(img)
31    % 在这里调用前面定义的图像预处理、颜色区域定位和BP神经网络识别代码
32    % ...
33end

应用场景

  • 交通管理:用于交通标志的自动化识别,提高交通管理效率。
  • 自动驾驶:辅助自动驾驶系统识别道路上的交通标志。
  • 安全监控:用于监控交通标志的有效性,确保交通安全。

结论

基于MATLAB的交通标志识别系统通过结合图像处理技术和BP神经网络模型,实现了对交通标志的自动检测和识别。系统通过MATLAB的App Designer构建了一个用户友好的GUI界面,使用户能够方便地上传图片并查看识别结果。该系统可以应用于交通管理、自动驾驶和安全监控等多个领域,提高交通标志识别的准确性和效率。随着技术的不断进步,此类系统将在实际应用中发挥更大的作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/875259.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OpenAI发布o1大模型,突破LLM推理极限,弥补了之前在数学、科学和代码方面的不足

在北京时间9月13日凌晨&#xff0c;OpenAI正式发布了一系列全新的AI大模型【o1-preview 和 o1-mini】&#xff0c;专门针对复杂问题的解决。这一发布标志着一次重要的突破&#xff0c;新模型能够实现复杂的推理能力&#xff0c;通用模型在解决科学、代码和数学等领域中的难题方…

Linux 防火墙:iptables (一)

文章目录 iptables 概述netfilter 与 iptables 的关系 四表五链规则表规则链数据包处理的优先顺序与规则链匹配顺序规则表的优先顺序规则链的匹配顺序规则链内的匹配顺序匹配流程示意图 安装与格式iptables 的安装iptables 防火墙的配置方法iptables 命令行配置方法常用的控制类…

TestCraft - GPT支持的测试想法生成器和自动化测试生成器

在当今快速变化的软件开发世界中&#xff0c;自动化测试已成为确保软件质量的关键环节。而随着AI技术的进步&#xff0c;越来越多的工具开始引入人工智能&#xff0c;来辅助生成测试用例和自动化测试脚本。其中&#xff0c;TestCraft&#xff0c;作为一款GPT支持的测试想法生成…

【数据结构】双向链表专题

目录 1.双向链表的结构 2.双向链表的实现 2.1初始化 以参数的形式初始化链表&#xff1a; 以返回值的形式初始化链表&#xff1a; 2.2尾插 2.3打印 2.4头插 2.5尾删 2.6头删 2.7查找 2.8在指定位置之后插入数据​编辑 2.9删除pos节点 2.10销毁 3.整理代码 3.1…

Unity笔记:ScrollRect代码阅读

大体流程 Unity Docs - UGUI | Class ScrollRect 总的说 自身不负责Rebuild&#xff0c;设置脏之后交由LayoutRebuilder注册到CanvasUpdateRegistry里待rebuild的集合在固定时机统一Rebuild。自身只在Prelayout和Postlayout做一下数据准备和数据更新 自身的ICanvasElement.…

Visual Studio配置opencv环境

&#xff08;1&#xff09;打开属性页面&#xff08;鼠标放在解决方案上&#xff0c;点击右键会有一个属性选项弹出&#xff09; &#xff08;2&#xff09;配置opencv的include和opencv2路径&#xff0c;具体路径和版本根据自己电脑配置 &#xff08;3&#xff09;配置opencv…

OpenAI o1预览模型发布:推理能力更强 可达理科博士生水准

今日凌晨&#xff0c;OpenAI正式推出了OpenAI o1预览模型。 对于复杂推理任务而言&#xff0c;新模型代表着人工智能能力的崭新水平&#xff0c;其特点就是会在回答之前花更多时间进行思考&#xff0c;就像人类思考解决问题的过程一样。 OpenAI曾解释过&#xff0c;2023年发布…

卡车配置一键启动无钥匙进入手机控车

‌ 卡车智能一键启动无钥匙进入手机控车&#xff0c;通过手机应用程序与汽车内置硬件、软件的无线通信&#xff0c;实现对汽车的远程控制‌。 卡车改装一键启动的步骤包括安装门把手的感应装置、拆卸仪表台和门板&#xff0c;取出内部的待接线束&#xff0c;并将一键启动…

ip地址a段b段c段是什么意思

在互联网的世界里&#xff0c;每一个设备都需要一个独特的标识符来相互识别和通信&#xff0c;这就是IP地址。IP地址不仅仅是一串数字&#xff0c;它背后隐藏着网络的组织结构和设备的连接方式。本文将深入探讨IP地址中的A段、B段、C段的含义&#xff0c;以及它们在网络通信中的…

VSCode创建项目和编译多文件

前言 在刚安装好VSCode后&#xff0c;我简单尝试了仅main.cpp单文件编译代码&#xff0c;没有问题&#xff0c;但是当我尝试多文件编译时&#xff0c;就出现了无法识别cpp文件。 内容 创建项目 首先点击左上角“文件”&#xff1b;在菜单中选择“打开文件夹”&#xff1b;在…

建材家居家具电器整站网站打包下载预览图及地址二

木质装饰材料网站模板_建材家居家具电器类下载有预览图在博客首页.zip 响应式高端品牌建材陶瓷瓷砖网站模板_建材家居家具电器类下载有预览图在博客首页.zip 响应式创意家居网站模板_建材家居家具电器类下载有预览图在博客首页.zip 木纹地板墙砖类网站模板_建材家居家具电器…

极狐GitLab CI/CD 作业一直处于等待状态,如何解决?

本分分享 GitLab CI/CD Job 不工作的的故障排查方法&#xff1a;当 GitLab Runner 不接受 Job&#xff0c;Job 一直处于等待状态&#xff0c;如何解决此问题。 极狐GitLab 为 GitLab 在中国的发行版&#xff0c;中文版本对中国用户更友好。极狐GitLab 支持一键私有化部署&…

加密与安全_ sm-crypto 国密算法sm2、sm3和sm4的Java库

文章目录 Presm-crypto如何使用如何引入依赖 sm2获取密钥对加密解密签名验签获取椭圆曲线点 sm3sm4加密解密 Pre 加密与安全_三种方式实现基于国密非对称加密算法的加解密和签名验签 sm-crypto https://github.com/antherd/sm-crypto 国密算法sm2、sm3和sm4的java版。基于js…

linux入门到实操-4 linux系统网络配置、连接测试、网络连接模式、修改静态IP、配置主机名

教程来源&#xff1a;B站视频BV1WY4y1H7d3 3天搞定Linux&#xff0c;1天搞定Shell&#xff0c;清华学神带你通关_哔哩哔哩_bilibili 整理汇总的课程内容笔记和课程资料&#xff08;包含课程同版本linux系统文件等内容&#xff09;&#xff0c;供大家学习交流下载&#xff1a;…

QML学习三:qml设计器报错 Line: 0: The Design Mode requires a valid Qt kit

开发环境&#xff1a;Qt 6.5.3 LTS 1、Qt 6.5.3 LTS 2、Pyside6 3、Python 3.11.4 4、win11 默认不打开设计器的时候可以看到我们默认是有Python的环境&#xff0c;而且点击运行是可以运行的。但是当打开qml设计器时提示下面这个错误&#xff0c;提示需要一个可用的套件。 …

通信工程学习:什么是ASON自动交换光网络

ASON&#xff1a;自动交换光网络 ASON&#xff08;Automatically Switched Optical Network&#xff09;&#xff0c;即自动交换光网络&#xff0c;是一种在选路和信令控制下完成自动交换功能的新一代光网络。它代表了未来智能光网络发展的主流方向&#xff0c;是下一代智能光传…

论文笔记:基于LLM和多轮学习的漫画零样本角色识别与说话人预测

整理了ACM MM2024 Zero-Shot Character Identification and Speaker Prediction in Comics via Iterative Multimodal Fusion&#xff09;论文的阅读笔记 背景模型框架实现细节 模型数据集实验可视化消融实验 背景 最近读到一篇新文章&#xff0c;主要是做漫画中的零样本角色识…

Java并发:互斥锁,读写锁,Condition,StampedLock

3&#xff0c;Lock与Condition 3.1&#xff0c;互斥锁 3.1.1&#xff0c;可重入锁 锁的可重入性&#xff08;Reentrant Locking&#xff09;是指在同一个线程中&#xff0c;已经获取锁的线程可以再次获取该锁而不会导致死锁。这种特性允许线程在持有锁的情况下&#xff0c;可…

如何在 Selenium 中获取网络调用请求?

引言 捕获网络请求对于理解网站的工作方式以及传输的数据至关重要。Selenium 作为一种 Web 自动化工具,可以用于捕获网络请求。本文将讨论如何使用 Selenium 在 Java 中捕获网络请求并从网站检索数据。 我们可以使用浏览器开发者工具轻松捕获网络请求或日志。大多数现代 Web…

【iOS】UIViewController的生命周期

UIViewController的生命周期 文章目录 UIViewController的生命周期前言UIViewController的一个结构UIViewController的函数的执行顺序运行代码viewWillAppear && viewDidAppear多个视图控制器跳转时的生命周期pushpresent 小结 前言 之前对于有关于UIViewControlller的…