2023年国赛数学建模思路 - 案例:随机森林

文章目录

    • 1 什么是随机森林?
    • 2 随机深林构造流程
    • 3 随机森林的优缺点
      • 3.1 优点
      • 3.2 缺点
    • 4 随机深林算法实现
  • 建模资料

## 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 什么是随机森林?

随机森林属于 集成学习 中的 Bagging(Bootstrap AGgregation 的简称) 方法。如果用图来表示他们之间的关系如下:

在这里插入图片描述
决策树 – Decision Tree

在这里插入图片描述
在解释随机森林前,需要先提一下决策树。决策树是一种很简单的算法,他的解释性强,也符合人类的直观思维。这是一种基于if-then-else规则的有监督学习算法,上面的图片可以直观的表达决策树的逻辑。

随机森林 – Random Forest | RF

在这里插入图片描述
随机森林是由很多决策树构成的,不同决策树之间没有关联。

当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。

2 随机深林构造流程

在这里插入图片描述

    1. 一个样本容量为N的样本,有放回的抽取N次,每次抽取1个,最终形成了N个样本。这选择好了的N个样本用来训练一个决策树,作为决策树根节点处的样本。
    1. 当每个样本有M个属性时,在决策树的每个节点需要分裂时,随机从这M个属性中选取出m个属性,满足条件m << M。然后从这m个属性中采用某种策略(比如说信息增益)来选择1个属性作为该节点的分裂属性。
    1. 决策树形成过程中每个节点都要按照步骤2来分裂(很容易理解,如果下一次该节点选出来的那一个属性是刚刚其父节点分裂时用过的属性,则该节点已经达到了叶子节点,无须继续分裂了)。一直到不能够再分裂为止。注意整个决策树形成过程中没有进行剪枝。
    1. 按照步骤1~3建立大量的决策树,这样就构成了随机森林了。

3 随机森林的优缺点

3.1 优点

  • 它可以出来很高维度(特征很多)的数据,并且不用降维,无需做特征选择
  • 它可以判断特征的重要程度
  • 可以判断出不同特征之间的相互影响
  • 不容易过拟合
  • 训练速度比较快,容易做成并行方法
  • 实现起来比较简单
  • 对于不平衡的数据集来说,它可以平衡误差。
  • 如果有很大一部分的特征遗失,仍可以维持准确度。

3.2 缺点

  • 随机森林已经被证明在某些噪音较大的分类或回归问题上会过拟合。
  • 对于有不同取值的属性的数据,取值划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的

4 随机深林算法实现

数据集:https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/

import csv
from random import seed
from random import randrange
from math import sqrt


def loadCSV(filename):#加载数据,一行行的存入列表
    dataSet = []
    with open(filename, 'r') as file:
        csvReader = csv.reader(file)
        for line in csvReader:
            dataSet.append(line)
    return dataSet

# 除了标签列,其他列都转换为float类型
def column_to_float(dataSet):
    featLen = len(dataSet[0]) - 1
    for data in dataSet:
        for column in range(featLen):
            data[column] = float(data[column].strip())

# 将数据集随机分成N块,方便交叉验证,其中一块是测试集,其他四块是训练集
def spiltDataSet(dataSet, n_folds):
    fold_size = int(len(dataSet) / n_folds)
    dataSet_copy = list(dataSet)
    dataSet_spilt = []
    for i in range(n_folds):
        fold = []
        while len(fold) < fold_size:  # 这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立
            index = randrange(len(dataSet_copy))
            fold.append(dataSet_copy.pop(index))  # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
        dataSet_spilt.append(fold)
    return dataSet_spilt

# 构造数据子集
def get_subsample(dataSet, ratio):
    subdataSet = []
    lenSubdata = round(len(dataSet) * ratio)#返回浮点数
    while len(subdataSet) < lenSubdata:
        index = randrange(len(dataSet) - 1)
        subdataSet.append(dataSet[index])
    # print len(subdataSet)
    return subdataSet

# 分割数据集
def data_spilt(dataSet, index, value):
    left = []
    right = []
    for row in dataSet:
        if row[index] < value:
            left.append(row)
        else:
            right.append(row)
    return left, right

# 计算分割代价
def spilt_loss(left, right, class_values):
    loss = 0.0
    for class_value in class_values:
        left_size = len(left)
        if left_size != 0:  # 防止除数为零
            prop = [row[-1] for row in left].count(class_value) / float(left_size)
            loss += (prop * (1.0 - prop))
        right_size = len(right)
        if right_size != 0:
            prop = [row[-1] for row in right].count(class_value) / float(right_size)
            loss += (prop * (1.0 - prop))
    return loss

# 选取任意的n个特征,在这n个特征中,选取分割时的最优特征
def get_best_spilt(dataSet, n_features):
    features = []
    class_values = list(set(row[-1] for row in dataSet))
    b_index, b_value, b_loss, b_left, b_right = 999, 999, 999, None, None
    while len(features) < n_features:
        index = randrange(len(dataSet[0]) - 1)
        if index not in features:
            features.append(index)
    # print 'features:',features
    for index in features:#找到列的最适合做节点的索引,(损失最小)
        for row in dataSet:
            left, right = data_spilt(dataSet, index, row[index])#以它为节点的,左右分支
            loss = spilt_loss(left, right, class_values)
            if loss < b_loss:#寻找最小分割代价
                b_index, b_value, b_loss, b_left, b_right = index, row[index], loss, left, right
    # print b_loss
    # print type(b_index)
    return {'index': b_index, 'value': b_value, 'left': b_left, 'right': b_right}

# 决定输出标签
def decide_label(data):
    output = [row[-1] for row in data]
    return max(set(output), key=output.count)


# 子分割,不断地构建叶节点的过程对对对
def sub_spilt(root, n_features, max_depth, min_size, depth):
    left = root['left']
    # print left
    right = root['right']
    del (root['left'])
    del (root['right'])
    # print depth
    if not left or not right:
        root['left'] = root['right'] = decide_label(left + right)
        # print 'testing'
        return
    if depth > max_depth:
        root['left'] = decide_label(left)
        root['right'] = decide_label(right)
        return
    if len(left) < min_size:
        root['left'] = decide_label(left)
    else:
        root['left'] = get_best_spilt(left, n_features)
        # print 'testing_left'
        sub_spilt(root['left'], n_features, max_depth, min_size, depth + 1)
    if len(right) < min_size:
        root['right'] = decide_label(right)
    else:
        root['right'] = get_best_spilt(right, n_features)
        # print 'testing_right'
        sub_spilt(root['right'], n_features, max_depth, min_size, depth + 1)

        # 构造决策树
def build_tree(dataSet, n_features, max_depth, min_size):
    root = get_best_spilt(dataSet, n_features)
    sub_spilt(root, n_features, max_depth, min_size, 1)
    return root
# 预测测试集结果
def predict(tree, row):
    predictions = []
    if row[tree['index']] < tree['value']:
        if isinstance(tree['left'], dict):
            return predict(tree['left'], row)
        else:
            return tree['left']
    else:
        if isinstance(tree['right'], dict):
            return predict(tree['right'], row)
        else:
            return tree['right']
            # predictions=set(predictions)
def bagging_predict(trees, row):
    predictions = [predict(tree, row) for tree in trees]
    return max(set(predictions), key=predictions.count)
# 创建随机森林
def random_forest(train, test, ratio, n_feature, max_depth, min_size, n_trees):
    trees = []
    for i in range(n_trees):
        train = get_subsample(train, ratio)#从切割的数据集中选取子集
        tree = build_tree(train, n_features, max_depth, min_size)
        # print 'tree %d: '%i,tree
        trees.append(tree)
    # predict_values = [predict(trees,row) for row in test]
    predict_values = [bagging_predict(trees, row) for row in test]
    return predict_values
# 计算准确率
def accuracy(predict_values, actual):
    correct = 0
    for i in range(len(actual)):
        if actual[i] == predict_values[i]:
            correct += 1
    return correct / float(len(actual))


if __name__ == '__main__':
    seed(1) 
    dataSet = loadCSV('sonar-all-data.csv')
    column_to_float(dataSet)#dataSet
    n_folds = 5
    max_depth = 15
    min_size = 1
    ratio = 1.0
    # n_features=sqrt(len(dataSet)-1)
    n_features = 15
    n_trees = 10
    folds = spiltDataSet(dataSet, n_folds)#先是切割数据集
    scores = []
    for fold in folds:
        train_set = folds[
                    :]  # 此处不能简单地用train_set=folds,这样用属于引用,那么当train_set的值改变的时候,folds的值也会改变,所以要用复制的形式。(L[:])能够复制序列,D.copy() 能够复制字典,list能够生成拷贝 list(L)
        train_set.remove(fold)#选好训练集
        # print len(folds)
        train_set = sum(train_set, [])  # 将多个fold列表组合成一个train_set列表
        # print len(train_set)
        test_set = []
        for row in fold:
            row_copy = list(row)
            row_copy[-1] = None
            test_set.append(row_copy)
            # for row in test_set:
            # print row[-1]
        actual = [row[-1] for row in fold]
        predict_values = random_forest(train_set, test_set, ratio, n_features, max_depth, min_size, n_trees)
        accur = accuracy(predict_values, actual)
        scores.append(accur)
    print ('Trees is %d' % n_trees)
    print ('scores:%s' % scores)
    print ('mean score:%s' % (sum(scores) / float(len(scores))))

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/87491.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

司徒理财:8.21黄金空头呈阶梯下移!今日操作策略

黄金走势分析 盘面裸k分析&#xff1a;1小时周期的行情局部于1896附近即下行通道上轨附近录得一系列的K线呈震荡下行并筑圆顶&#xff0c;上轨压制有效&#xff0c;下行通道并未突破&#xff0c;后市建议延续看下行。4小时周期局部录得一系列的纺锤线呈震荡&#xff0c;但行情整…

Pinia基本概念

Pinia基本概念 面试题&#xff1a;Pinia 相比 Vuex 有什么样的优点&#xff1f;为什么现在官方推荐使用 Pinia &#xff1f; Pinia&#xff0c;是一个 Vue 阵营的新的状态管理库&#xff0c;现在 Vue 官方已经推荐使用 Pinia 来代替 Vuex&#xff0c;或者你可以把 Pinia 看作是…

C++设计模式之桥接模式

文章目录 一、桥接模式二、std::error_code与设计模式&#xff08;桥接模式&#xff09;参考 一、桥接模式 在C中&#xff0c;桥接模式通常涉及以下几个角色&#xff1a; 抽象类接口&#xff08;Abstraction&#xff09;&#xff1a;定义抽象部分的接口&#xff0c;并维护一个…

C语言之扫雷游戏实现篇

目录 主函数test.c 菜单函数 选择循环 扫雷游戏实现分析 整体思路 问题1 问题2 问题3 问题4 游戏函数&#xff08;函数调用&#xff09; 创建游戏盘数组mine 创建游戏盘数组show 初始化游戏盘数组InitBoard 展示游戏盘DisplayBoard 游戏盘置雷SetMine 游戏…

(已解决)PySpark : AttributeError: ‘DataFrame‘ object has no attribute ‘iteritems‘

AttributeError: ‘DataFrame’ object has no attribute ‘iteritems’ 原因在使用SparkSession对象中createDataFrame函数想要将pandas的dataframe转换成spark的dataframe时出现的 因为createDataFrame使用了新版本pandas弃用的iteritems()&#xff0c;所以报错 解决办法&…

成功解决修改已经push到远程git仓库的commit message

1.使用 Git 命令行进入要修改的项目目录。 2.运行 git log 命令查看提交历史&#xff0c;找到要修改的提交的哈希值&#xff08;commit hash&#xff09;。 3.运行 git rebase -i <commit hash> 命令&#xff0c;将 <commit hash> 替换为要修改的提交的哈希值。这将…

基于jenkins自动化部署PHP环境

实验环境 操作系统 IP地址 主机名 角色 CentOS7.5 192.168.147.141 git git服务器 CentOS7.5 192.168.147.142 Jenkins git客户端 jenkins服务器 CentOS7.5 192.168.147.143 web web服务器 具体环境配置见上一篇&#xff01; 准备git仓库 [rootgit ~]# su -…

vue3 父子传值的使用

父传子&#xff1a; setup语法糖的写法&#xff1a; 子传父&#xff1a; setup语糖的写法&#xff1a;

stm32之12.如何使用printf打印输出

主函数增加这些代码即可实现printf打印输出 需要添加头文件 #include "stdio.h" --------------- 源码 struct __FILE { int handle; /* Add whatever you need here */ }; FILE __stdout; FILE __stdin; int fputc(int c, FILE *f) { /* 发送一个字节 */ …

Navicat for Mysql 显示 emoji 表情符号乱码问题 — 其它乱码情况都可参考

系统环境&#xff1a; 操作系统&#xff1a;MAC OS 10.11.6 MySQL&#xff1a;Server version: 5.6.21 MySQL Community Server (GPL) Navicat for MySQL: version 9.3.1 - standard 1、问题发现 在客户端执行用户注册&#xff0c;用户名包括 emoji 表情符号&#xff0c;注册完…

Android学习之路(8) Activity

本节引言&#xff1a; 本节开始讲解Android的四大组件之一的Activity(活动)&#xff0c;先来看下官方对于Activity的介绍&#xff1a; 移动应用体验与桌面体验的不同之处在于&#xff0c;用户与应用的互动并不总是在同一位置开始&#xff0c;而是经常以不确定的方式开始。例如&…

【Unity自制手册】游戏基础API大全

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…

docker搭建es+kibana

docker搭建eskibana 0 安装docker 如果是mac或者windows&#xff0c;可以直接安装Docker Desktop更加便捷。 前提条件&#xff1a; Docker可以运行在Windows、Mac、CentOS、Ubuntu等操作系统上 Docker支持以下的CentOS版本&#xff1a; CentOS 7 (64-bit)CentOS 6.5 (64-bit…

【点击新增一个下拉框 与前一个内容一样 但不能选同一个值】

点击新增一个下拉框 与前一个内容一样 但不能选同一个值 主要是看下拉选择el-option的disabled,注意不要混淆 <el-form label-width"120px" :model"form" ref"form" style"color: #fff"><template v-for"(trapolicy, i…

SpringCloud学习笔记(六)_Ribbon服务调用

Ribbon介绍 Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端负载均衡的工具 Ribbon是Netflix发布的开源项目&#xff0c;主要功能是提供客户端的软件负载均衡算法和服务调用。Ribbon客户端组件提供一系列完善的配置项如连接超时、重试等。简单的说&#xff0c;就是…

神通数据库v7.0试用版安装步骤

网上找了下神通数据库的安装教程&#xff0c;发现都已经过时&#xff0c;或者安装受阻&#xff0c;于是直接从官网下载后尝试亲自安装了一遍适用版&#xff0c;在CentOS7(64bit)环境具体操作步骤如下&#xff1a; 1、安装 wget工具 yum install -y wget 2、安装rar解压工具 …

ssm学生公寓管理中心系统源码和论文

ssm学生公寓管理中心系统源码和论文057 开发工具&#xff1a;idea 数据库mysql5.7 数据库链接工具&#xff1a;navcat,小海豚等 技术&#xff1a;ssm 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;…

Nexus 如何配置 Python 的私有仓库

Nexus 可作为一个代理来使用。 针对一些网络环境不好的公司&#xff0c;可以通过配置 Nexus 来作为远程的代理。 Group 概念 Nexus 有一个 Group 的概念&#xff0c;我们可以认为一个 Nexus 仓库的 Group 就是很多不同的仓库的集合。 从下面的配置中我们可以看到&#xff0…

用户端Web自动化测试_L3

目录&#xff1a; 浏览器复用Cookie 复用pageobject设计模式异常自动截图测试用例流程设计电子商务产品实战 1.浏览器复用 复用浏览器简介 为什么要学习复用浏览器&#xff1f; 自动化测试过程中&#xff0c;存在人为介入场景提高调试UI自动化测试脚本效率 复用已有浏览…