第三部分:4---进程地址空间

目录

数组的空间分配解析:

物理地址和虚拟地址:

虚拟地址空间:

进程地址空间的本质:

为什么要有进程地址空间?

页表对进程访问内存的检查:

进程地址空间和页表如何关联起来?

进程的独立性如何体现?


 

  • BSS段从上到下包括:未初始化全局数据区、已初始化全局数据区。

  • 堆区向上增长,所以在堆区后开辟的空间要比先开辟的空间的地址高。

  • 栈区向下增长,和堆区截然相反。

数组的空间分配解析:

  • 开辟的数组存储在栈区空间中,一次在栈区中从上向下开辟一整块空间。

  • 数组首元素被分配在这块空间的最下端,也就是地址最低处,之后的数组元素依次向上存放。

  • 这样对数组++,就能够找到下一个元素(由下向上,地址变大)。

  • 对于结构体也是一样,先声明的成员所在的地址小于后声明的成员的地址。

  • 对于一个int类型的变量,也可以理解为:申请4字节大小的空间,然后将数据依次从下向上存放。变量的地址就是第一个自己的地址。

物理地址和虚拟地址:

int g_val = 0; //创建一个全局变量

int main()
{
    pid_t id = fork();
    if(id < 0){
        perror("fork");
        return 0;
    }
    else if(id == 0) //如果是子进程,就将全局变量的值改为100
    { 
        g_val=100;
        printf("child[%d]: %d : %p\n", getpid(), g_val, &g_val);
    }
    else //如果是父进程,就直接打印全局变量的值
    { 
        sleep(3);
        printf("parent[%d]: %d : %p\n", getpid(), g_val, &g_val);
    }
    sleep(1);
    return 0;
}

 

  • 父子进程操作同一个全局变量,所操作的全局变量的地址相同。但是子进程对全局变量的修改,并不会影响到父进程打印的全局变量。

  • 可以推断出父子进程操作的不是同一个全局变量,基于写时拷贝,父子进程会各自保有一份全局变量g_val。

  • 得到结论,打印得到的地址并不是物理地址,而是虚拟地址。

虚拟地址空间:

  • 子进程在创建时(通常通过 fork 系统调用)会拷贝父进程的地址空间,使得子进程拥有与父进程相同的虚拟地址空间。这意味着在父进程和子进程中,所有变量的虚拟地址是相同的。

  • 虚拟地址通过页表映射到物理地址。虽然父子进程的虚拟地址空间相同,但它们的页表是独立的。最初,父子进程的页表中的映射指向相同的物理内存地址,这样可以共享内存,从而提高效率。

  • 通过页表的不同映射,父子进程在内存中的物理地址可以不同。当进程尝试修改某个共享的全局变量或数据时,操作系统会触发写时拷贝机制。

  • 写时拷贝机制:当父进程或子进程中的某一个试图修改共享的全局变量时,操作系统会拷贝该变量所在的物理页帧,并为尝试修改的进程创建一个新的物理页。然后,操作系统将该新页帧的物理地址更新到该进程的页表中,将这个虚拟地址与新物理地址关联起来。这样,两个进程依然可以拥有相同的虚拟地址,但实际访问的是不同的物理内存,保证了数据的一致性和进程间的独立性。

进程地址空间的本质:

  • 程序地址空间的本质是操作系统内核管理的一个数据结构,它用于描述和管理一个进程所能访问的所有虚拟内存地址。

  • 地址空间中的内存区域通常被划分为多个小块,每个小块对应一个特定的用途,如代码段、数据段、堆区、栈区等。

  • 这个数据结构的核心是一个或多个结构体,这些结构体包含了对每个内存小块的描述信息,包括起始地址、结束地址、访问权限(如可读、可写、可执行)等。

  • 程序地址空间仅仅是对进程虚拟内存的逻辑描述,并不是实际的物理内存。它定义了进程在运行时可以访问哪些虚拟地址,而实际的物理内存是由操作系统通过页表等机制进行动态映射和管理的。

  • 由此可以理解“ 堆栈相对而生 ”的意义就是:不断调整堆栈在进程地址空间的起始结束位置。

为什么要有进程地址空间?

  • 进程地址空间通过页表管理加载到内存中的进程及其数据。页表负责将进程的虚拟地址映射到物理内存地址,从而实现对进程的内存管理。

  • 因此,进程控制块(PCB)无需直接关心进程及其数据在物理内存中的具体位置。页表的存在使得PCB只需关注虚拟地址和相关的状态信息,而不必追踪数据在物理内存中的具体布局。

  • 这种机制赋予了进程一个统一的视角来管理和访问内存,通过将无序的物理内存映射为有序的虚拟地址空间,操作系统为每个进程提供了一个一致且线性的内存视图。

  • 进程及其数据可以在物理内存中灵活加载,无需担心具体的加载顺序。由于页表的动态映射,操作系统可以根据需要在任何空闲的物理内存位置加载进程和数据,而虚拟地址空间的连续性和有序性则由页表负责保证。

页表对进程访问内存的检查:

  • 页表不仅包含虚拟地址到物理地址的映射,还包含对该映射的访问权限字段。这些权限字段通常包括可读、可写、可执行等属性,用来控制进程对内存的访问权限。

  • 当进程试图通过地址空间访问内存时,操作系统会通过页表来检查该访问请求是否符合权限要求。如果请求的地址超出合法范围(即非法地址),或访问权限不符合页表中的规定,操作系统会在虚拟地址转化为物理地址的过程中拦截该访问。

  • 这种机制为内存访问提供了安全保障。当进程试图执行非法操作时,例如读取未授权的内存区域或执行不可执行的代码段,操作系统会触发一个保护机制(如产生一个页面错误异常),并采取相应的措施(如终止进程或发出警告)。

  • 因此可以理解为什么在字符常量区的常量不能被修改:字符常量区(通常位于代码段或专门的常量区)中的常量在加载到内存时,操作系统会通过页表将这一段的访问权限设置为只读。使得任何试图修改这些常量的操作都会被操作系统拦截,并通常会导致程序崩溃或产生异常。

进程地址空间和页表如何关联起来?

  • CPU通过页表基址寄存器(CR3寄存器)直接找到页表进行地址映射。CR3寄存器中存储的是当前进程页表的物理地址,而不是虚拟地址。通过这个物理地址,CPU可以快速访问页表,从而将虚拟地址转换为实际的物理地址。

  • 每个进程都有自己独立的页表,用于管理该进程的虚拟地址空间。页表在进程的上下文中被保存,当操作系统调度器将进程切换到CPU上执行时,它会从该进程的上下文中读取页表地址,并将其加载到CR3寄存器中。

  • 在进程切换时,当前进程的页表地址会被保存到它的上下文中,随后,新的进程被加载时,其页表地址会被从其上下文中恢复并加载到CR3寄存器中。这种机制确保了不同进程在运行时可以独立地管理和访问各自的内存空间,而不互相干扰。

进程的独立性如何体现?

  • 每个进程都有自己独立的关键数据结构,包括进程控制块(PCB)、进程地址空间、页表以及分配给该进程的物理内存。这些数据结构在操作系统中被严格隔离,确保进程之间的独立性。

  • 当一个进程崩溃时,由于操作系统对进程的隔离管理,这种崩溃通常只会影响到该进程自身的数据结构,如其PCB、地址空间和与其相关联的物理内存。其他进程的执行和数据不会受到影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/874286.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

保姆级离线+windows环境+私有化部署大模型

基于gis数据的高敏感高保密性要求&#xff0c;相信gis的小伙伴都有如下的需求&#xff1a;在内网&#xff0c;无外网环境下&#xff0c;部署自己的私有化大模型。 1.环境背景&#xff1a; 没有Linux环境&#xff0c;只是windows 无外网&#xff0c;内网环境 2.安装部署过程…

数据结构与算法1: 链表

基础知识 链表可以被想象为一系列的节点&#xff0c;每个节点至少有一个指针指向下一个节点&#xff0c;在最后一个节点&#xff0c;用null pointer来表示链表的结束。 链表的创建速度通常很快&#xff0c;在表头和表尾的插入也很快&#xff08;O(1)&#xff09;&#xff0c;…

HCIA--实验十三:VLAN间通信子接口实验/双单臂路由实验

一、实验内容 1.需求/要求&#xff1a; 将两个单臂路由通过两台交换机连接起来&#xff0c;成为双臂路由&#xff0c;并探讨这么做的原因。实现全网通&#xff0c;让任何一台主机之间都可以通信。 二、实验过程 1.拓扑图&#xff1a; 2.步骤&#xff1a; 1.给PC配置ip地址…

Oceanbase Restore Point实践

官网链接&#xff1a;Restore Point-V3.2.4-OceanBase 数据库文档-分布式数据库使用文档 在很多应用系统中&#xff0c;用户需要查询数据库中的某个时间点&#xff0c;或者特定版本的数据来完成一些数据分析或汇总之类的操作。 OceanBase 数据库在 V2.2.7x 版本中提供了 Restor…

大学生租房平台:SpringBoot框架的设计与实现

第4章 系统设计 一个成功设计的系统在内容上必定是丰富的&#xff0c;在系统外观或系统功能上必定是对用户友好的。所以为了提升系统的价值&#xff0c;吸引更多的访问者访问系统&#xff0c;以及让来访用户可以花费更多时间停留在系统上&#xff0c;则表明该系统设计得比较专业…

5.第二阶段x86游戏实战2-认识内存

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 本次游戏没法给 内容参考于&#xff1a;微尘网络安全 工具下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1rEEJnt85npn7N38Ai0_F2Q?pwd6tw3 提…

分享从零开始学习网络设备配置--任务6.3 使用基本ACL限制网络访问

任务描述 某公司构建了互联互通的办公网&#xff0c;为保护公司内网用户数据的安全&#xff0c;该公司实施内网安全防范措施。公司分为经理部、财务部和销售部&#xff0c;分属3个不同的网段&#xff0c;3个部门之间用路由器进行信息传递。为了安全起见&#xff0c;公司领导要求…

C语言——希尔排序

希尔排序是对于插入排序的一种优化 代码&#xff1a; #include <stdio.h> #include <stdlib.h> void shell_sort(int* p, int len) { int i; int j; int step; int tmp; for (step len / 2; step > 0; step step / 2) { fo…

JavaWeb【day14】--(SpingBoot原理)

SpingBoot原理 在前面十多天的课程当中&#xff0c;我们学习的都是web开发的技术使用&#xff0c;都是面向应用层面的&#xff0c;我们学会了怎么样去用。而我们今天所要学习的是web后端开发的最后一个篇章springboot原理篇&#xff0c;主要偏向于底层原理。 我们今天的课程安…

【达梦数据库】误删数据库目录问题复现解决方式

目录 1、环境搭建1.1、查询数据库版本1.2、创建表1.3、插入数据1.4、查询数据 2、故障重演2.1、服务器内直接删除整个库文件2.2、查询数据&#xff1a;数据可查2.3、查看进程&#xff1a;进程存在2.4、查看proc进程文件&#xff1a;deleted 3、数据恢复3.1、逻辑导出导入-(数据…

算法练习题17——leetcode54螺旋矩阵

题目描述 给你一个 m 行 n 列的矩阵 matrix &#xff0c;请按照 顺时针螺旋顺序 &#xff0c;返回矩阵中的所有元素。 代码 import java.util.*;class Solution {public List<Integer> spiralOrder(int[][] matrix) {// 用于存储螺旋顺序遍历的结果List<Integer>…

【数据结构-二维前缀和】力扣221. 最大正方形

在一个由 ‘0’ 和 ‘1’ 组成的二维矩阵内&#xff0c;找到只包含 ‘1’ 的最大正方形&#xff0c;并返回其面积。 示例 1&#xff1a; 输入&#xff1a;matrix [[“1”,“0”,“1”,“0”,“0”],[“1”,“0”,“1”,“1”,“1”],[“1”,“1”,“1”,“1”,“1”],[“1”…

【Qt 即时通讯项目】登录验证码是如何做到的呢

文章目录 1. 登录注册功能验证码实现2. 验证码生成的流程3. 细节部分 1. 登录注册功能验证码实现 &#x1f427;①目的&#xff1a;引入验证码&#xff0c;目的是用来避免程序被其它程序暴力破解的方式找到密码。 2. 验证码生成的流程 ①&#x1f34e;首先通过Qt的QRandomGen…

智能优化算法-樽海鞘优化算法(SSA)(附源码)

目录 1.内容介绍 2.部分代码 3.实验结果 4.内容获取 1.内容介绍 樽海鞘优化算法 (Salp Swarm Algorithm, SSA) 虽然名称中提到的是“樽海鞘”&#xff0c;但实际上这个算法是基于群体智能的一种元启发式优化算法&#xff0c;它模拟了樽海鞘&#xff08;Salps&#xff09;在海…

SOLIDWORKS Electrical用户权限管理

SOLIDWORKS Electrical 可以自定义用户权限管理&#xff0c;用户权限设置可设置不同的用户(工程师)针对其在软件中查看和修改的内容。如&#xff1a;A用户的权限只能查看预览某些项目文件无法修改内容&#xff0c;B用户可以查看某个文件夹的内容并可以更改;都可以通过用户权限来…

西门子博途零基础学PLC必会的100个指令

#西门子##PLC##自动化##工业自动化##编程##电工##西门子PLC##工业##制造业##数字化##电气##工程师# 工控人加入PLC工业自动化精英社群 工控人加入PLC工业自动化精英社群

第三部分:3---环境变量

目录 什么是环境变量&#xff1f; PATH环境变量&#xff1a; 临时修改环境变量PATH&#xff1a; HOME环境变量&#xff1a; 可能使用环境变量的场景&#xff1a; 进程和环境变量的关系&#xff1a; 环境变量相关操作&#xff1a; 代码获取环境变量&#xff1a; 主函数传…

C# WPF燃气报警器记录读取串口工具

C# WPF燃气报警器记录读取串口工具 概要串口帧数据布局文件代码文件运行效果源码下载 概要 符合国标文件《GB15322.2-2019.pdf》串口通信协议定义&#xff1b;可读取燃气报警器家用版设备历史记录信息等信息&#xff1b; 串口帧数据 串口通信如何确定一帧数据接收完成是个…

第二证券:科创板股票交易规则,科创板新手可以买吗?

科创板是独立于现有主板商场的特别板块&#xff0c;面向的是国际科技前沿、经济主战场、国家严峻需求&#xff0c;首要服务于契合国家战略、打破要害核心技术、商场认可度高的科技立异企业。 科创板是独立于现有主板商场的特别板块&#xff0c;面向的是国际科技前沿、经济主战…

Windows安装anaconda注意事项及jupyter notebook更换目录

anaconda的介绍就不罗嗦了&#xff0c;既然准备安装了&#xff0c;说明你已经有所了解了。直入主题&#xff0c;Anaconda官网下载&#xff0c;实在太慢&#xff0c;可到https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/下载&#xff0c;注意&#xff0c;这是清华镜像站…